NOTE ON "POSITIVE CESÁRO MEANS OF NUMERICAL SERIES"

J. BUSTOZ

ABSTRACT. We give a short proof of a result due to R. Askey.

In this note we will give a short proof of Theorem 1 in the preceding paper by R. Askey. The proof utilizes a trick applied earlier by Askey and Pollard [1]. We restate Askey's result for convenience.

Theorem. If $\gamma > \alpha > -1$, and the (C, γ) means of $\sum a_n$ are nonnegative then the (C, α) means of $\sum a_n r^n$ are nonnegative for $0 \leq r \leq (\alpha + 1)/(\gamma + 1)$.

Proof. We need to show that $A_n(r) \geq 0$ for $0 \leq r \leq (\alpha + 1)/(\gamma + 1)$ where

$$(1 - w)^{-\alpha - 1} \sum a_n r^n w^n = \sum A_n(r) w^n.$$

We may write

$$(1 - w)^{-\alpha - 1} \sum a_n r^n w^n = (1 - w)^{-\alpha - 1}(1 - rw)^{\gamma + 1} (1 - rw)^{-\gamma - 1} \sum a_n r^n w^n.$$

The hypothesis gives that $(1 - rw)^{-\gamma - 1} \sum a_n r^n w^n$ has nonnegative power series coefficients for $r \geq 0$. Now we need only show that $h(w; r) = (1 - w)^{-\alpha - 1}(1 - rw)^{\gamma + 1}$ has nonnegative power series coefficients for r in the given interval. Taking logs we get

$$\log h(w; r) = \sum [(\alpha + 1) - (\gamma + 1) r^n] \frac{w^n}{n},$$

and $\log h(w; r)$ then has nonnegative coefficients for $0 \leq r \leq (\alpha + 1)/(\gamma + 1)$. The same must be true of $h(w; r)$ and so $A_n(r) \geq 0$ in this interval as claimed.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO 45221

Received by the editors February 14, 1974.
AMS (MOS) subject classifications (1970). Primary 40G05.
Key words and phrases. Cesáro means.