A note on the Dugundji extension theorem
HTML articles powered by AMS MathViewer
- by D. Lutzer and H. Martin
- Proc. Amer. Math. Soc. 45 (1974), 137-139
- DOI: https://doi.org/10.1090/S0002-9939-1974-0345058-8
- PDF | Request permission
Abstract:
We prove that if $A$ is a closed, metrizable, ${G_\delta }$-subspace of a collectionwise normal space $X$ then there is a linear transformation $e:C(A) \to C(X)$ such that for each $g\in C(A),e(g)$ extends $g$ and the range of $e(g)$ is contained in the closed convex hull of the range of $g$.References
- R. A. Aló and H. L. Shapiro, A note on compactifications and semi-normal spaces, J. Austral. Math. Soc. 8 (1968), 102–108. MR 0227943
- Richard Arens, Extension of functions on fully normal spaces, Pacific J. Math. 2 (1952), 11–22. MR 49543
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116
- R. W. Heath and D. J. Lutzer, Dugundji extension theorems for linearly ordered spaces, Pacific J. Math. 55 (1974), 419–425. MR 370477
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Ernest Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789–806. MR 59541
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 137-139
- MSC: Primary 54C20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0345058-8
- MathSciNet review: 0345058