On the automorphism group of a Lie group
HTML articles powered by AMS MathViewer
- by D. Wigner
- Proc. Amer. Math. Soc. 45 (1974), 140-143
- DOI: https://doi.org/10.1090/S0002-9939-1974-0357684-0
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 60 (1976), 376.
Abstract:
It is proved that the automorphism group of a connected real or complex Lie group contains an open real or complex algebraic subgroup. It follows that the identity component of the group of complex automorphisms of a connected complex Lie group is a complex algebraic group.References
- Andrzej Białynicki-Birula and Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200–203. MR 140516, DOI 10.1090/S0002-9939-1962-0140516-5
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- G. Hochschild, Introduction to affine algebraic groups, Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam, 1971. MR 0277535 L. Pontrjagin, Topological groups, GITTL, Moscow, 1938; English transl., Princeton Math. Series, vol. 2, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 44.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 140-143
- MSC: Primary 22D45; Secondary 22E15, 22E20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0357684-0
- MathSciNet review: 0357684