NEW DISTORTION THEOREMS FOR FUNCTIONS OF POSITIVE REAL PART AND APPLICATIONS TO THE PARTIAL SUMS OF UNIVALENT CONVEX FUNCTIONS

S. D. BERNARDI

ABSTRACT. New distortion theorems are obtained for the class of functions \(p(z) = 1 + c_nz^n + \cdots (n \geq 1) \) which are analytic and \(\text{Re} \ p(z) > \alpha \) \((0 < \alpha < 1)\) in the unit disk \(|z| < 1 \). These are used to obtain new results regarding the partial sums of univalent convex functions.

1. Introduction. Let \(P_{\alpha,n} \) represent the class of functions \(p(z) = 1 + c_nz^n + \cdots (n \geq 1) \) which are analytic and \(\text{Re} \ p(z) > \alpha \) \((0 < \alpha < 1)\) for \(z \in \mathbb{D} : |z| < 1 \). The class \((K) \) consists of those normalized functions \(f(z) = z + a_2z^2 + \cdots \) which are analytic and univalent in \(\mathbb{D} \) and have convex image domains \(f(\mathbb{D}) = z + a_2z^2 + \cdots + a_nz^n \) are the partial sums of \(f(z) \). Theorems 1, 2 represent extensions of known distortion theorems of functions of positive real part; these are used to derive Theorems 3, 4 which represent new results concerning the partial sums of univalent convex functions.

2. Theorems and their proofs.

Theorem 1. Let \(p(z) \in P_{\alpha,n} \). Then for \(|z| = r < 1 \), and \(n = 1, 2, 3, \ldots \),

\[
|zp'(z)| \leq 2nr^n \text{Re}[p(z) - \alpha]/(1 - r^{2n}).
\]

For each \(n \) and each \(\alpha \), equality is attained at \(z = r \) for the function \(p(z) = \alpha + [(1 - \alpha)(1 - z^n)/(1 + z^n)] = 1 - 2(1 - \alpha)z^n + \cdots \).

Proof. The special case of (1) when \(p(z) \in P_{0,1} \) is well known. (For a simple proof see remark in [1, p. 316].) For \(p(z) \in P_{0,n} \) the weaker inequality \(|zp'(z)/p(z)| \leq [2nr^n/(1 - r^{2n})] \) was proven by T. H. MacGregor [4]. To prove (1) we employ a technique similar to that used in [4].

Assume \(\alpha = 0 \), for then the transformation \(p(z) \rightarrow (p(z) - \alpha)/(1 - \alpha) \) will give the general result. If \(p(z) \in P_{0,n} \) then \(k(z) = (1 - p(z))/(1 + p(z)) = d_nz^n + \cdots \) is analytic for \(|z| < 1 \) and \(|k(z)| < 1 \). Hence \(k(z) = z^n\phi(z) \),

Received by the editors July 2, 1973.

Key words and phrases. Univalent functions, convex functions, radius of star-likeness, functions with positive real part.
where \(\phi(z) \) is analytic for \(|z| < 1 \) and \(|\phi(z)| \leq 1 \). For such functions we have [5, p. 168]

\[
|\phi'(z)| \leq \frac{(1 - |\phi(z)|^2)/(1 - |z|^2)}{(1 - |z|^2)} \quad (|z| < 1),
\]

From \(z^n\phi(z) = (1 - p(z))/(1 + p(z)) \) we obtain

(a) \(|\phi|^2 = (1/r^{2n})|(1 - p)/(1 + p)|^2 \),
(b) \(|\phi'| = (1/r^{n+1})|(2zp' + n(1 - p^2))/(1 + p)^2| \),

where \(r = |z| \), \(p \equiv p(z) \) and \(\phi \equiv \phi(z) \). Substituting (a) and (b) into (2) and then multiplying by \(|1 + p|^2 \) we obtain

\[
|2zp' + n(1 - p^2)| \leq \frac{r^{2n}|1 + p|^2 - |1 - p|^2}{(1 - r^2)r^{n-1}},
\]

Thus, to prove (1) (with \(\alpha = 0 \)), it is sufficient to show

\[
\frac{n|1 - p|^2 + r^{2n}|1 + p|^2 - |1 - p|^2}{(1 - r^2)r^{n-1}} \leq \frac{4nr^n \text{Re} p}{1 - r^{2n}}.
\]

Now we express \(|1 + p|^2 \), \(|1 - p|^2 \) and \(\text{Re} p \) in terms of \(|1 - p^2| \). From \(z^n\phi = (1 - p)/(1 + p) \) we obtain

(c) \(|1 - p|^2 = |1 - p^2||z^n\phi| \),
(d) \(|1 + p|^2|z^n\phi| = |1 - p^2| \).

From (c) and (d) we have

(e) \(4 \text{Re} p = |1 + p|^2 - |1 - p|^2 = |1 - p^2|[(1 - |z^n\phi|^2)/|z^n\phi|] \).

Substituting (c), (d), (e) into (3) and then cancelling \(|1 - p^2| \) we obtain

\[
(1 - |\phi|)r^{2n-1}[n(1 - r^2)(1 + |\phi|r^{2n}) + r(1 - r^{2n})(1 + |\phi|)] \leq 0.
\]

Therefore, it is sufficient to show

\[
\frac{r(1 - r^{2n})(1 + |\phi|) - n(1 - r^2)(1 + |\phi|r^{2n})}{n(1 - r^2)(1 + |\phi|r^{2n})} \leq 0 \quad (0 \leq r < 1; \ |\phi| \leq 1; \ n = 1, 2, 3, \ldots).
\]

The inequality (4) is equivalent to

\[
\frac{n(1 - r^{2n})}{n(1 - r^{2n})} \leq \frac{1 + |\phi|r^{2n}}{1 + |\phi|} = 1 - (1 - r^{2n}) \frac{|\phi|}{1 + |\phi|}.
\]
For fixed \(r \), the right side of (5) is minimum when \(|\phi'| = 1 \). Hence, using \(|\phi'| = 1 \) in (4) we obtain the sufficient condition

\[
(6) \quad n(1 - r^2)(1 + r^{2n}) - 2r(1 - r^{2n}) \geq 0 \quad (0 \leq r < 1; \ n = 1, 2, 3, \ldots).
\]

The inequality (6) is equivalent to \((1 - r^2)M(n, r) \geq 0\), where

\[
M(n, r) = n + nr^{2n} - 2r(1 + r^2 + r^4 + \cdots + r^{2(n-1)}).
\]

We now show that \(M(n, r) > 0 \) for \(0 < r < 1 \) and \(r > 1 \). We have \(M(1, r) = (1 - r^2)^2 > 0 \). For \(n = 2, 4, 6, \ldots \) we find that

\[
M(n, r) = 2((1 - r)(1 - r^{2n-1}) + (1 - r^3)(1 - r^{2n-3}) + (1 - r^5)(1 - r^{2n-5}) + \cdots + (1 - r^{n-1})(1 - r^{n+1}))
\]

\[
= 2 \sum_{k=1}^{n/2} (1 - r^{2k-1})(1 - r^{2n-2k+1}) > 0.
\]

For \(n = 3, 5, 7, \ldots \) we find that

\[
M(n, r) = (1 - r^n)^2 + 2((1 - r)(1 - r^{2n-1}) + (1 - r^3)(1 - r^{2n-3}) + (1 - r^5)(1 - r^{2n-5}) + \cdots + (1 - r^{n-2})(1 - r^{n+2}))
\]

\[
= (1 - r^n)^2 + 2 \sum_{k=1}^{(n-1)/2} (1 - r^{2k-1})(1 - r^{2n-2k+1}) > 0.
\]

This completes the proof. The statement that equality is attained in (1) at \(z = r \) for the given function is easily verified. We now apply Theorem 1 to obtain an extension of a result of R. J. Libera.

Theorem 2. Let \(p(z) \in P_{a,n} \). Then for \(|z| = r, 0 \leq r < 1, n = 1, 2, 3, \ldots \) and any complex number \(\mu, \text{Re} \mu = \beta \geq 0 \),

\[
(7) \quad \left| \frac{zp'(z)}{p(z) - \alpha + (1 - \alpha)\mu} \right| \leq \frac{2nr^n}{(1 - r^n)[1 + \beta + (1 - \beta)r^n]}.
\]

Proof. The special case of (7) with \(\alpha = 0 \) and \(n = 1 \) was proven by R. J. Libera [3]; we employ the same technique. Assume that \(\alpha = 0 \), for then the transformation \(p(z) \rightarrow (p(z) - \alpha)/(1 - \alpha) \) will give the general result.
\[
\left| \frac{zp'(z)}{p(z) + \mu} \right| \leq \frac{|zp'(z)|}{Re \, p(z) + \beta} \leq \frac{2nr^n \, Re \, p(z)}{1 - r^{2n}} \cdot \frac{1}{Re \, p(z) + \beta} \\
\leq \frac{2nr^n}{1 - r^{2n}} \cdot \frac{1}{1 + \beta/|p(z)|},
\]

where we have used the inequality (1) (with \(a = 0 \)). The result now follows by substituting \(|p(z)| = |(1 - z^n\phi)/(1 + z^n\phi)| \leq (1 + r^n)/(1 - r^n)\).

In Theorem 2, the choice \(p = (a - c)/(1 - a) \) yields

\[
\left| \frac{zp'(z)}{p(z)} \right| \leq \frac{2n(1 - \alpha)^n}{(1 - r^n)[1 - \gamma + (1 - 2\alpha + \gamma)r^n]} \\
(p(z) \in P_{\alpha,n}; \ 0 \leq r < 1; \ \gamma = Re \ c \leq \alpha).
\]

If we integrate the inequality (7) along the line segment joining the origin and the point \(z \), we obtain

Corollary 1. With the same hypotheses as in Theorem 2, we have

\[
\begin{align*}
(7a) & \quad \left| \log \frac{p(z) - \alpha + (1 - \alpha)\mu}{(1 - \alpha)(1 + \mu)} \right| \leq \log \frac{(1 + \beta) + (1 - \beta)r^n}{(1 + \beta)(1 - r^n)}, \\
(7b) & \quad \left| \frac{p(z) - \alpha + (1 - \alpha)\mu}{(1 - \alpha)(1 + \mu)} \right| \leq \frac{(1 + \beta) + (1 - \beta)r^n}{(1 + \beta)(1 - r^n)}.
\end{align*}
\]

In (7b), the choice \(p = (a - c)/(1 - a) \) yields

\[
|p(z) - c| \leq \frac{(1 - Re \ c) + (1 - 2\alpha + Re \ c)r^n}{(1 - Re \ c)(1 - r^n)} \quad (Re \ c \leq \alpha).
\]

Finally, we note that in Theorem 2 the choice \(p = a/(1 - a) \) yields the theorem which was recently announced by Dorothy B. Shaffer [6].

We now apply Theorem 2 to obtain a sharp result involving the partial sums of functions belonging to the class \((K)\).

Theorem 3. Let \(f(z) = z + a_2z^2 + \cdots \in (K) \), and \(S_n(z) = z + a_2z^2 + \cdots + a_nz^n \) its partial sums. Then for \(n = 1, 2, 3, \ldots \) and \(|z| = r < 1\),

\[
|z|f'(z)/f(z) - zS'_n(z)/S_n(z)| \leq nr^n/(1 - r^n).
\]

Equality is attained, for each \(n \), at \(z = r \) for the function \(f(z) = z/(1 - z) \).
Proof. It has been shown independently by this writer [2] and by T. Sheil-Small [7] that if \(f(z) \in (K) \) and \(S_n(z) \) are its partial sums, then \(|f(z) - S_n(z)| \leq |z^n f(z)| \) and this implies \(\text{Re} \left[\frac{f(z)}{S_n(z)} \right] > \frac{1}{2} \) for \(n = 1, 2, 3, \ldots \) and \(|z| < 1 \). Thus, since
\[
(9) \quad p(z) = \frac{f(z)}{S_n(z)} = 1 + a_{n+1} z^n + \cdots \in P_{1/2,n},
\]
the result (8) follows readily upon substituting (9) into the inequality (7) of Theorem 2, taking \(\mu = 1 \) and \(\alpha = \frac{1}{2} \). For the function \(f(z) = z/(1 - z) \) we have
\[
z f'(z)/f(z) - nz^n/(1 - z^n),
\]
so that for this function equality is attained in (8) at \(z = r \).

If in (7a) we take \(\mu = 1, \alpha = \frac{1}{2}, p(z) = f(z)/S_n(z) \) we obtain

Corollary 2. Let \(f(z) \in (K) \), and \(S_n(z) \) its partial sums. Then for \(n = 1, 2, 3, \ldots \) and \(|z| = r < 1 \),
\[
|\log\left(\frac{f(z)}{S_n(z)} \right)| \leq \log\left(\frac{1}{1 - r^n} \right).
\]

We now apply Theorem 3 to obtain the radius of univalence and starlikeness for the partial sums of a convex function.

Theorem 4. Let \(f(z) = z + a_2 z^2 + \cdots \in (K) \), and \(S_n(z) = z + a_2 z^2 + \cdots + a_n z^n \) its partial sums. Then \(S_n(z) \) is univalent and starlike in the disk \(|z| < r_0 \), where \(r_0 \) is the positive root of the equation
\[
1 - (1 + n)r^n - nr^{n+1} = 0 \quad (n \geq 2).
\]
This result is sharp for each even \(n = 2, 4, 6, \cdots \) for the function \(f(z) = z/(1 - z) \).

Proof. From (8) of Theorem 3 we have
\[
\text{Re} \left(\frac{z S_n'(z)}{S_n(z)} \right) \geq \text{Re} \left(\frac{z f'(z)}{f(z)} \right) - nr^n/(1 - r^n).
\]
Since \(f \in (K) \), we apply the well-known bound \(\text{Re} \left(\frac{z f'/f}{1 + r} \right) \geq 1/(1 + r) \), so that
\[
(11) \quad \frac{z S_n'(z)}{S_n(z)} \geq \frac{1}{1 + r} - \frac{nr^n}{1 - r^n} = \frac{1 - (1 + n)r^n - nr^{n+1}}{(1 + r)(1 - r^n)} \geq 0
\]
if \(1 - (1 + n)r^n - nr^{n+1} \geq 0 \). For the function \(f(z) = z/(1 - z) \in (K) \), we have
\[
z S_n'(z)/S_n(z) = (1 - (1 + n)z^n + nz^{n+1})/(1 - z)(1 - z^n),
\]
For $z = -r$ and $n = 2, 4, 6, \ldots$ the right side of (12) is identical with the right side of (11) so that for n even no improvement of (10) is possible in the class (K). We note that for each n, r_0 given by (10) satisfies $r_0 \geq \frac{1}{2}$ and, furthermore, $r_0 \to 1$ as $n \to \infty$.

REFERENCES

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012