New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions
HTML articles powered by AMS MathViewer
- by S. D. Bernardi
- Proc. Amer. Math. Soc. 45 (1974), 113-118
- DOI: https://doi.org/10.1090/S0002-9939-1974-0357755-9
- PDF | Request permission
Abstract:
New distortion theorems are obtained for the class of functions $p(z) = 1 + {c_n}{z^n} + \cdots (n \geq 1)$ which are analytic and $\text {Re} p(z) > \alpha (0 \leq \alpha < 1)$ in the unit disk $|z| < 1$. These are used to obtain new results regarding the partial sums of univalent convex functions.References
- S. D. Bernardi, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 24 (1970), 312–318. MR 251202, DOI 10.1090/S0002-9939-1970-0251202-X —, Univalent convex maps of the unit disk. I, II, III, Notices Amer. Math. Soc. 17 (1970), 441, 566; ibid. 18 (1971), 640. Abstract #70T-B54; 70T-B77; 71T-B113.
- Richard J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143–158. MR 160890
- Thomas H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514–520. MR 148891, DOI 10.1090/S0002-9939-1963-0148891-3
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Dorothy Browne Shaffer, Distortion theorems for a special class of analytic functions, Proc. Amer. Math. Soc. 39 (1973), 281–287. MR 315113, DOI 10.1090/S0002-9939-1973-0315113-6
- T. Sheil-Small, A note on the partial sums of convex schlicht functions, Bull. London Math. Soc. 2 (1970), 165–168. MR 265576, DOI 10.1112/blms/2.2.165
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 113-118
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1974-0357755-9
- MathSciNet review: 0357755