On the distribution of zeros of entire functions
Author:
A. R. Reddy
Journal:
Proc. Amer. Math. Soc. 45 (1974), 105112
MSC:
Primary 30A66
DOI:
https://doi.org/10.1090/S00029939197403696973
MathSciNet review:
0369697
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: Let $f(z)$ be any transcendental entire function. Let ${r_k}$ denote the absolute value of the zero ${z_k}$ of ${f^{(k)}}(z)$ which is nearest to the origin. Ålander, Erdös and Rényi, and Pólya have investigated the relation between ${r_k}$ and the growth of the function $f(z)$. Let ${s_k}$ denote the largest disk about the origin where ${f^{(k)}}(z)$ is univalent. Boas, Levinson, and Pólya have obtained some relations between the growth of the function $f(z)$ and ${s_k}$. Recently Shah and Trimble have sharpened the results of Boas and Pólya. We present here results in a different direction, generalizing the above quoted results. We also present results connecting the zerofree disks and the univalent disks about the origin of the normalized remainders of $f(z)$ with the growth of $f(z)$.

M. Ålander, Sur le déplacement des zéros des fonctions entières par leur dérivation, Thesis, Upsala, 1914.
, Sur les dérivées successives des fonctions régulières, Opuscula Mathematica, A. Wiman dedicata, Lund, 1930, 7993.
 R. P. Boas Jr., Univalent derivatives of entire functions, Duke Math. J. 6 (1940), 719–721. MR 2601
 Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. MR 0068627
 R. P. Boas Jr. and A. R. Reddy, Zeros of the successive derivatives of entire functions, J. Math. Anal. Appl. 42 (1973), 466–473. Collection of articles dedicated to Salomon Bochner. MR 333183, DOI https://doi.org/10.1016/0022247X%2873%29901534
 J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. (3) 23 (1971), 348–370. MR 296297, DOI https://doi.org/10.1112/plms/s323.2.348
 J. D. Buckholtz and J. K. Shaw, Zeros of partial sums and remainders of power series, Trans. Amer. Math. Soc. 166 (1972), 269–284. MR 299762, DOI https://doi.org/10.1090/S00029947197202997623
 Douglas Michael Campbell, Locally univalent functions with locally univalent derivatives, Trans. Amer. Math. Soc. 162 (1971), 395–409. MR 286992, DOI https://doi.org/10.1090/S00029947197102869929
 P. Erdös and A. Rényi, On the number of zeros of successive derivatives of analytic functions, Acta Math. Acad. Sci. Hungar. 7 (1956), 125–144 (English, with Russian summary). MR 80155, DOI https://doi.org/10.1007/BF02028197 G. H. Hardy, On the zeros of a class of integral functions, Messenger of Math. 34 (1905), 97101.
 Norman Levinson, A theorem of Boas, Duke Math. J. 8 (1941), 181–182. MR 3802 G. Pólya, Some problems connected with Fourier’s work on transcendental equations, Quart. Math. 1 (1930), 622634.
 G. Polya, On the zeros of the derivatives of a function and its analytic character, Bull. Amer. Math. Soc. 49 (1943), 178–191. MR 7781, DOI https://doi.org/10.1090/S000299041943078536
 A. R. Reddy, Note on a theorem of Erdős and Rényi, Acta Math. Acad. Sci. Hungar. 20 (1969), 241–243. MR 237786, DOI https://doi.org/10.1007/BF01894588
 S. M. Shah and S. Y. Trimble, Univalent functions with univalent derivatives. II, Trans. Amer. Math. Soc. 144 (1969), 313–320. MR 249598, DOI https://doi.org/10.1090/S00029947196902495984
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A66
Retrieve articles in all journals with MSC: 30A66
Additional Information
Keywords:
Zeros of entire functions,
zerofree disks,
univalent disks
Article copyright:
© Copyright 1974
American Mathematical Society