On the distribution of zeros of entire functions
HTML articles powered by AMS MathViewer
- by A. R. Reddy
- Proc. Amer. Math. Soc. 45 (1974), 105-112
- DOI: https://doi.org/10.1090/S0002-9939-1974-0369697-3
- PDF | Request permission
Abstract:
Let $f(z)$ be any transcendental entire function. Let ${r_k}$ denote the absolute value of the zero ${z_k}$ of ${f^{(k)}}(z)$ which is nearest to the origin. Ålander, Erdös and Rényi, and Pólya have investigated the relation between ${r_k}$ and the growth of the function $f(z)$. Let ${s_k}$ denote the largest disk about the origin where ${f^{(k)}}(z)$ is univalent. Boas, Levinson, and Pólya have obtained some relations between the growth of the function $f(z)$ and ${s_k}$. Recently Shah and Trimble have sharpened the results of Boas and Pólya. We present here results in a different direction, generalizing the above quoted results. We also present results connecting the zero-free disks and the univalent disks about the origin of the normalized remainders of $f(z)$ with the growth of $f(z)$.References
- M. Ålander, Sur le déplacement des zéros des fonctions entières par leur dérivation, Thesis, Upsala, 1914.
—, Sur les dérivées successives des fonctions régulières, Opuscula Mathematica, A. Wiman dedicata, Lund, 1930, 79-93.
- R. P. Boas Jr., Univalent derivatives of entire functions, Duke Math. J. 6 (1940), 719–721. MR 2601
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- R. P. Boas Jr. and A. R. Reddy, Zeros of the successive derivatives of entire functions, J. Math. Anal. Appl. 42 (1973), 466–473. Collection of articles dedicated to Salomon Bochner. MR 333183, DOI 10.1016/0022-247X(73)90153-4
- J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. (3) 23 (1971), 348–370. MR 296297, DOI 10.1112/plms/s3-23.2.348
- J. D. Buckholtz and J. K. Shaw, Zeros of partial sums and remainders of power series, Trans. Amer. Math. Soc. 166 (1972), 269–284. MR 299762, DOI 10.1090/S0002-9947-1972-0299762-3
- Douglas Michael Campbell, Locally univalent functions with locally univalent derivatives, Trans. Amer. Math. Soc. 162 (1971), 395–409. MR 286992, DOI 10.1090/S0002-9947-1971-0286992-9
- P. Erdös and A. Rényi, On the number of zeros of successive derivatives of analytic functions, Acta Math. Acad. Sci. Hungar. 7 (1956), 125–144 (English, with Russian summary). MR 80155, DOI 10.1007/BF02028197 G. H. Hardy, On the zeros of a class of integral functions, Messenger of Math. 34 (1905), 97-101.
- Norman Levinson, A theorem of Boas, Duke Math. J. 8 (1941), 181–182. MR 3802 G. Pólya, Some problems connected with Fourier’s work on transcendental equations, Quart. Math. 1 (1930), 622-634.
- G. Polya, On the zeros of the derivatives of a function and its analytic character, Bull. Amer. Math. Soc. 49 (1943), 178–191. MR 7781, DOI 10.1090/S0002-9904-1943-07853-6
- A. R. Reddy, Note on a theorem of Erdős and Rényi, Acta Math. Acad. Sci. Hungar. 20 (1969), 241–243. MR 237786, DOI 10.1007/BF01894588
- S. M. Shah and S. Y. Trimble, Univalent functions with univalent derivatives. II, Trans. Amer. Math. Soc. 144 (1969), 313–320. MR 249598, DOI 10.1090/S0002-9947-1969-0249598-4
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 105-112
- MSC: Primary 30A66
- DOI: https://doi.org/10.1090/S0002-9939-1974-0369697-3
- MathSciNet review: 0369697