ON FUNDAMENTAL TRANSVERSAL MATROIDS¹

R. A. BRUALDI

ABSTRACT. Unified proofs of two theorems on fundamental transversal matroids are presented. A necessary condition for a matroid to be a fundamental transversal matroid with respect to a given basis is given.

The purpose of this note is to prove a theorem about fundamental transversal matroids which in turn yields unified proofs of two recent theorems about such matroids. We assume the reader has a modest acquaintance with the basic notions of matroid theory. Thus he or she should know that a matroid (or combinatorial pregeometry) M on a finite set E consists of a nonempty, hereditary collection of subsets of E which are called independent sets, and that the maximal independent sets all have the same cardinality (the rank of M) and are called bases. Corresponding to a matroid M there are circuits (minimal nonindependent sets) and a dual matroid M^* whose bases (cobases of M) are the complements of the bases of M. The circuits of M^* are called cocircuits (or bonds) of M. A property important in what follows is that a cocircuit and circuit cannot have exactly one element in common. A matroid is nonseparable if every pair of elements of E lie in a common circuit; otherwise there is a partition $E=I_1 \cup \cdots \cup I_t$ of E and matroids M_i on E_i ($1 \leq i \leq t$) such that M is the direct sum $M_1 \oplus \cdots \oplus M_t$. For more details one can consult [2], [4], or [7].

An interesting kind of matroid is a transversal matroid [3] whose independent sets are the partial transversals of a family of sets. If $(A_i : i \in I)$ is a family of subsets of set E, then $T(A_i : i \in I)$ denotes the corresponding transversal matroid.

Suppose M is a matroid on E and B is a basis of M. Each $e \in B$ gives rise to a unique cocircuit C_e^* with $e \in C_e^* \subseteq (E \setminus B) \cup \{e\}$ called the fundamental cocircuit of e with respect to the cobasis $E \setminus B$. For $e \in E \setminus B$
set $C^*_e = \{e\}$. Dually each $x \in E \setminus B$ gives rise to a unique circuit C_x with $x \in C_x \subseteq B \cup \{x\}$, called the fundamental circuit of x with respect to the basis B. For $x \in B$ set $C_x = \{x\}$. The matroid M is a fundamental transversal matroid [1] if there is a basis B such that $M = T(C^*_e : e \in B)$. Examples of such matroids are the so-called free matroids $\mathcal{F}_r (E)$ whose bases consist of all r element subsets of E (any basis works for B in the definition) and the cycle matroid [4] of the graph of Figure 1.

![Figure 1](image)

A basis (spanning tree) B can be used to show this is a fundamental transversal matroid if and only if $c \in B$. For example, if $B = \{a, c, e\}$, then $\{a, b\}, \{b, c, d\}$, and $\{d, e\}$ give a fundamental presentation. After proving some results we shall look at this example again.

Theorem 1. Suppose M is a matroid on E with rank r. Let B be a basis of M, and F any r element subset of E. Then F is an independent set (i.e. basis or transversal) of $T(C^*_e : e \in B)$, denoted $F \in T(C^*_e : e \in B)$, if and only if $B \in T(C^*_e : e \in F)$.

Proof. Suppose $B \in M(C_x : x \in F)$, say $B = \{b_x : b_x \in C_x, x \in F\}$. If for some $b_x \in B \setminus F$, $x \notin C^*_{b_x}$, then $|C^*_{b_x} \cap C_x| = |b_x| = 1$. Since this cannot happen, $x \in C^*_{b_x}$ for all $x \in F \setminus B$. If $x \in F \cap B$, then $x \in C_x$, so $F \in T(C^*_e : e \in B)$. The converse is proved in a dual manner.

Applying Theorem 1 to the dual matroid M^* of M we obtain

**Theorem 1*. If B is a basis of the matroid M of rank r on E and F is an r element subset of E, then $E \setminus F \in T(C^*_x : x \in E \setminus B)$ if and only if $E \setminus B \in T(C^*_e : e \in E \setminus F)$.

For matroids M, M' of equal rank on the set E, recall that $M \subseteq M'$ means that all independent sets (equivalently bases) of M are independent sets of M'. In the terminology of [2] this means that the identity map on E is a geometric (weak) map.

Corollary 1. $M \subseteq T(C^*_e : e \in B)$.

Proof. Let F be any basis of M. Suppose $B \notin T(C^*_x : x \in F)$. Then by
Hall's theorem (see [6]), there exists $G \subseteq F$ with $\bigcup_{x \in G} C_x \cap B < |G|$. But then $\bigcup_{x \in G} C_x \cap B$ and G are both independent subsets of $\bigcup_{x \in G} C_x$ with the former a maximal independent subset and the latter of larger cardinality. This contradicts a basic tenet of matroid theory. The proof is now completed by invoking Theorem 1.

Corollary 2. Let F be an r element subset of E which is not a basis of M. Then there is a basis B of M (any extension to a basis of a maximal independent subset A of F will do) such that $F \notin T(C_e^* : e \in B)$.

Proof. $C_x \subseteq A$ for all $x \in F$. Hence $B \notin T(C_x : x \in F)$, so by Theorem 1, $F \notin T(C_e^* : e \in B)$.

The matroid M is the basis intersection of matroids M_1, \ldots, M_r provided the bases of M are precisely the common bases of M_1, \ldots, M_r.

Corollary 3 (Bondy and Welsh [1]). Every matroid of rank r is the basis intersection of fundamental transversal matroids of rank r.

Proof. Corollaries 1 and 2.

Theorem 2. Let F be an r element subset of E. Then $F \in T(C_e^* : e \in B)$ if and only if $E \setminus B \in T(C_e^* : e \in E \setminus F)$.

Proof. Since for $x \in F \cap B$, the only member of the family $(C_e^* : e \in B)$ which contains x is C_x^*, we conclude that

(i) $F \in T(C_e^* : e \in B)$ if and only if $F \setminus B \in T(C_e^* : e \in B \setminus F)$. Now $E \setminus B = (F \setminus B) \cup X$ and $E \setminus F = (B \setminus F) \cup X$ where $X = (E \setminus F) \cap (E \setminus B)$. Since for $e \in X$, $C_e^* = \{e\}$ we conclude that

(ii) $E \setminus B \in M(C_e^* : e \in E \setminus F)$ if and only if $F \setminus B \in T(C_e^* : e \in B \setminus F)$. Combining (i) and (ii) we obtain the conclusion of the theorem.

Corollary 4. Let F be an r element subset of E. Then $B \in T(C_x : x \in F)$ if and only if $E \setminus B \in T(C_e^* : e \in E \setminus F)$.

Proof. Theorems 1 and 2.

Corollary 5 (Las Vergnas [5]). The dual of a fundamental transversal matroid is a fundamental transversal matroid.

Proof. Let $M = T(C_e^* : e \in B)$. Let F be any r element subset of E. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Thus $M^* = T(C_x^*: x \in E \setminus B)$.

Example. Let M be the cycle matroid of the graph which is obtained from a triangle by doubling each edge. It is well known and easy to check that M is not a transversal matroid. In light of Corollary 5 this means that M^* is not a fundamental transversal matroid (although it is a transversal matroid), since $M = (M^*)^*$.

Theorem 3. Let M be a matroid on E and let B be a basis. Suppose for some $y \in E \setminus B$ there is a circuit D with $y \in D$ and $|D| < |C_y|$. Then $M \neq T(C_e^*: e \in B)$.

Proof. Consider the family $\{C_x \cap B: x \in D\}$. Since every proper subset A of D is independent, for all $A \subseteq D$, $\bigcup_{x \in A} C_x \cap B \geq |A|$. But also $|\bigcup_{x \in D} C_x \cap B| \geq |C_y \cap B| = |C_y| - 1 \geq |D|$.

Thus by Hall's theorem there is a subset T of B which is a transversal of $(C_x \cap B: x \in D)$. Let F be the r element set $D \cup (B \setminus T)$. Then since $C_x = \{x\}$ for $x \in B \setminus T$, $B \in T(C_x^*: x \in F)$. So by Theorem 1, $F \in T(C_e^*: e \in B)$.

Since $D \subseteq F$ and D is a circuit of M, $M \neq T(C_e^*: e \in B)$.

If M is the cycle matroid of the graph of Figure 1, then while M is a fundamental transversal matroid $M \neq T(C_x^*: x \in B)$ for the basis $B = \{a, b, e\}$. We can say this since $C_d = \{a, b, d, e\}$ while $D = \{d, c, e\}$ is a smaller circuit containing d.

As a final result we characterize those matroids which are fundamental transversal matroids with respect to every basis.

Theorem 4. Let M be a nonseparable matroid of rank r on E such that $M = T(C_e^*: e \in B)$ for all bases B. Then M is the matroid $P_r(E)$.

Proof. From Theorem 3 we conclude that for each $y \in E$ all circuits containing x have the same cardinality. This is so since if C, D were circuits containing y with $|D| < |C|$, we could choose a basis B with $C \setminus y \subseteq B$. For this basis B, $C_y = C$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
ON FUNDAMENTAL TRANSVERSAL MATROIDS

155

Since \mathcal{M} is nonseparable each pair of elements of E lies in a circuit. Thus all circuits of \mathcal{M} have the same cardinality, say k. Let B be any basis of \mathcal{M}. Let $x, y \in E \setminus B$ and choose a circuit D containing x and y. If $C_x \setminus \{x\} \neq C_y \setminus \{y\}$, then

$$\left| \bigcup_{x \in D} C_x \cap B \right| \geq |(C_x \setminus \{x\}) \cup (C_y \setminus \{y\})| \geq |C_x| = |D|$$

and as in the proof of Theorem 3 we conclude that $\mathcal{M} \neq T(C^*_e; e \in B)$. Thus $C_x \setminus \{x\} = C_y \setminus \{y\}$ for all $x, y \in E \setminus B$. But since \mathcal{M} is nonseparable, this readily implies that $C \setminus \{x\} = B$ for all $x \in E \setminus B$. In particular $k = r + 1$.

Now let F be any r element subset of E. Since all circuits of \mathcal{M} have cardinality $r + 1$, A is a basis of \mathcal{M}. Hence $\mathcal{M} = \mathcal{P}_r(E)$.

Corollary 6. If \mathcal{M} is a matroid of rank r on E such that $\mathcal{M} = \mathcal{M}(C^*_e; e \in B)$ for all bases B, then there is a partition E_1, \ldots, E_t of E with $\mathcal{M} = \mathcal{P}_{r_1}(E_1) \oplus \cdots \oplus \mathcal{P}_{r_t}(E_t)$ where $r = r_1 + \cdots + r_t$.

Example. Let \mathcal{M} be the cycle matroid of the graph in Figure 2.

```
\begin{figure}[h]
\centering
\begin{tikzpicture}
  \node (a) at (0,0) {$a$};
  \node (b) at (1,0) {$b$};
  \node (c) at (0,-1) {$c$};
  \node (d) at (1,-1) {$d$};
  \node (s) at (0,1) {$s$};
  \node (t) at (1,1) {$t$};
  \node (u) at (0,-2) {$u$};
  \draw (a) -- (b);
  \draw (a) -- (c);
  \draw (a) -- (d);
  \draw (b) -- (c);
  \draw (b) -- (d);
  \draw (c) -- (d);
\end{tikzpicture}
\caption{Figure 2}
\end{figure}
```

With respect to the basis $B = \{a, b, c, d\}$, for each $x \notin B$, C_x has smaller cardinality (namely 3) than any other circuit containing x. Thus the possibility that $\mathcal{M} = T(C^*_x; x \in B)$ is not ruled out by Theorem 3. But if $D = \{s, t, u, v\}$, then D is a circuit of \mathcal{M} and $D \in T(C^*_x; x \in B)$. (This is most readily checked by using Theorem 1.) Thus $\mathcal{M} \neq T(C^*_x; x \in B)$.

REFERENCES

