Sequential and conditional compactness in the dual of a barrelled space
HTML articles powered by AMS MathViewer
- by Edward G. Ostling
- Proc. Amer. Math. Soc. 45 (1974), 123-124
- DOI: https://doi.org/10.1090/S0002-9939-1974-0433178-9
- PDF | Request permission
Abstract:
Let $E$ be a barrelled locally convex space and suppose ${T_{\mathcal {A}}}$ is a topology on the dual $E’$ of $E$ which is admissible for the duality $(E,E’)$. It is shown that each ${T_{\mathcal {A}}}$ sequentially compact subset of $E’$ is ${T_{\mathcal {A}}}$ conditionally compact.References
- Joe Howard, Mackey compactness in Banach spaces, Proc. Amer. Math. Soc. 37 (1973), 108–110. MR 312212, DOI 10.1090/S0002-9939-1973-0312212-X
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578 G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, I960; English transl., Die Grundlehren der. math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
- A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 53, Cambridge University Press, New York, 1964. MR 0162118
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 123-124
- MSC: Primary 46A07
- DOI: https://doi.org/10.1090/S0002-9939-1974-0433178-9
- MathSciNet review: 0433178