Another proof of Szegő’s theorem for a singular measure
HTML articles powered by AMS MathViewer
- by Finbarr Holland
- Proc. Amer. Math. Soc. 45 (1974), 311-312
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350291-5
- PDF | Request permission
Abstract:
It is shown that the set $\{ {e^{\operatorname {int} }}:n \geqslant 1\}$ spans ${\mathfrak {L}^2}(\sigma )$ if $\sigma$ is a singular measure on the unit circle. The proof makes no appeal either to the F. and M. Riesz theorem on measures or to Hilbert space methods.References
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 311-312
- MSC: Primary 42A08; Secondary 30A78, 60G25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350291-5
- MathSciNet review: 0350291