SEMIHEREDITARY POLYNOMIAL RINGS

VICTOR P. CAMILLO

ABSTRACT. It is shown that if the ring of polynomials over a commutative ring \(R \) is semihereditary then \(R \) is von Neumann regular. This is the converse of a theorem of P. J. McCarthy.

P. J. McCarthy [2] has recently proved that for the ring of polynomials \(R[x] \) over a commutative ring to be semihereditary, it is sufficient that \(R \) be von Neumann regular. The purpose of this note is to show that this condition actually characterizes von Neumann regular rings.

The lattice of ideals of a commutative von Neumann regular ring is distributive, but not all such rings are von Neumann regular. If the lattice of ideals of \(R[x] \) is distributive then the lattice of ideals of \(R \) is, since \(R \) is a homomorphic image of \(R[x] \). In the process of proving the converse of McCarthy's theorem, we show that this latter condition characterizes von Neumann regular rings. Summarizing:

Theorem. The following are equivalent for a commutative ring \(R

1. \(R \) is von Neumann regular.
2. \(R[x] \) is semihereditary.
3. \(R[x] \) has a distributive lattice of ideals.

Proof. 1 implies 2 is McCarthy's theorem. The fact that a commutative semihereditary ring has a distributive lattice of ideals may be found in [1], which yields 2 implies 3.

To show 3 implies 1, we use the fact that a ring \(R \) has a distributive lattice of ideals if and only if, for \(r, s \in R \), \((r : s) + (s : r) = R \) where \((s : r) = \{ x \in R \mid sx \in rR \} \) [1]. The above statement is easily seen to be equivalent to the existence of \(u, v, \) and \(w \in R \) with: \(r(1 - u) = sv \) and \(su = rw \). Now, let \(a \in R \). We must show \(a^2R = aR \). The fact that \(R[x] \) has a distributive lattice of ideals yields \(u(x), v(x) \) and \(w(x) \) with:

Received by the editors October 9, 1973.

Key words and phrases. Von Neumann regular ring, semihereditary ring, distributive lattice.

Copyright © 1974, American Mathematical Society
(1) \(xu(x) = a \nu(x) \),
(2) \(a[1 - u(x)] = xw(x) \).

Multiplying both sides of (2) by \(x \), we obtain \(ax - axu(x) = x^2w(x) \), and using (1) to substitute \(a \nu(x) \) for \(xu(x) \) in this we have:

(3) \(ax - a^2 \nu(x) = x^2w(x) \).

But, if \(\nu_1 \) is the \(x \) coefficient of \(\nu \), then the \(x \) coefficient of the left side of (3) is \(a - a^2 \nu_1 \), while the \(x \) coefficient of the right side is zero, so \(a = a^2 \nu_1 \) and we are done.

Remark. The above proof actually shows that if \(I = aR[x] + xR[x] \) is projective, then \(aR \) is generated by an idempotent. Since Lemma 1 of [1] asserts that if \(R \) is commutative and \(xR + yR \) is projective, then \((x:y) + (y:x) = R \). The converse is also true, for if \(aR = eR \), then \(((1 - e)/x) \subset R \), and \(1 = ((1 - e)/x)x + e \), so that \(I \) is invertible.

BIBLIOGRAPHY