On the extreme points of some sets of analytic functions
HTML articles powered by AMS MathViewer
- by John G. Milcetich
- Proc. Amer. Math. Soc. 45 (1974), 223-228
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352470-X
- PDF | Request permission
Abstract:
Let $A$ denote the set of analytic functions defined on the open unit disc. The extreme points of $F = \{ f \epsilon A:f(0) = 0$ and $|\operatorname {Re} f(z)| < \pi /2$ are determined. Also a partial characterization is given for the extreme points of ${G_\alpha } = \{ f\epsilon A:f(0) = 1$ and $|\arg f(z)| < \alpha \pi /2\} ,0 < \alpha < 1$.References
- D. A. Brannan, J. G. Clunie, and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. I. 523 (1973), 18. MR 338343
- L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413–428 (1974). MR 338337, DOI 10.1090/S0002-9947-1973-0338337-5
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme-point theory, Pacific J. Math. 50 (1974), 455–468. MR 361035
- Hugh M. Hilden, A characterization of the extreme points of some convex sets of analytic functions, Duke Math. J. 37 (1970), 715–723. MR 271737
- Thomas H. MacGregor, Applications of extreme-point theory to univalent functions, Michigan Math. J. 19 (1972), 361–376. MR 311885
- John V. Ryff, Subordinate $H^{p}$ functions, Duke Math. J. 33 (1966), 347–354. MR 192062
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 223-228
- MSC: Primary 30A76
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352470-X
- MathSciNet review: 0352470