THE NONVANISHING OF CERTAIN CHARACTER SUMS

S. ULLOM

ABSTRACT. Let \(\chi \) be a Dirichlet character with conductor \(f \) and \(M(\chi) = \sum a \overline{\chi}(a) \), summation over integers \(a \) prime to \(f \) and \(1 \leq a < f \). It is well known that the nonvanishing of the Dirichlet \(L \)-function \(L(s, \chi) \) at \(s = 1 \) implies \(M(\chi) \neq 0 \) for \(\chi \) imaginary, i.e. \(\chi(-1) = -1 \). This article provides a purely algebraic proof that \(M(\chi) \neq 0 \) when the conductor \(f \) is a prime power and the imaginary \(\chi \) is either a faithful character or has order a power of 2.

1. Introduction. Let \(\chi \) be a Dirichlet character with conductor \(f \). If \(\chi \) is imaginary, that is \(\chi(-1) = -1 \), then the character sum \(M(\chi) \neq 0 \), where \(M(\chi) = \sum a \overline{\chi}(a) \), summation over integers \(a \) prime to \(f \) and \(1 \leq a < f \). In fact one knows [1, §4] that the Dirichlet \(L \)-function \(L(s, \chi) \) at \(s = 1 \) is

\[
L(1, \chi) = f^{-2} \pi i r(\chi) M(\chi), \quad r(\chi) \text{ a Gauss sum,}
\]

and \(L(1, \chi) \neq 0 \).

The problem is to find an elementary proof that \(M(\chi) \neq 0 \). Hasse [1, §31–32] obtained congruence properties of \(M(\chi) \) which imply \(M(\chi) \neq 0 \) when the conductor \(f \) is a prime power and \(\chi \) is either a faithful character or has order a power of 2. The purpose of this article is to give another algebraic proof of this result. The calculations of our method take place in a certain integral group ring and involve elements \(a \phi \) which are essentially idempotents in the rational group ring. There is still no algebraic proof that \(M(\chi) \neq 0 \) for all imaginary \(\chi \).

2. Preliminaries. In this article we fix \(f \), \(K = Q(\sqrt[\phi]{1}) \), and the Galois group \(G = G(K/Q) \). The group \(G \) is isomorphic to \((Z/fZ)\times \) by \(s_a \rightarrow a \mod f, \)

Received by the editors September 7, 1973.

AMS (MOS) subject classifications (1970). Primary 10G05, 12A35; Secondary 16A26, 12A50.

Key words and phrases. Character sum, cyclotomic field, class number, integral group ring.

1 This research was partially supported by a contract with the National Science Foundation.
(a, f) = 1; here \(s_a \in G \) raises an \(f \)th root of 1 to its \(a \)th power. The semi-simple \(Q \)-algebra \(QG \) is isomorphic to a direct sum \(\sum F_\phi \) of cyclotomic fields \(F_\phi \), which correspond to the irreducible rational characters (in the sense of representation theory) of \(QG \). Each homomorphism \(\chi: G \to \mathbb{C}^\times \), \(C \) complex numbers, determines a rational character \(\phi \) as follows. Let \(Q(\chi) \) be the field of values of \(\chi \), then \(\phi(s) = \sum \gamma(\chi(s)), s \in G \), summation over \(\gamma \in G(\chi) / Q \); the field \(F_\phi = Q(\chi) \). Denote by \(e_\phi \) the primitive idempotent of \(QG \)

\[
e_\phi = \frac{1}{|G|} \sum_{s \in G} \phi(s^{-1})s.
\]

Then \(\chi \) extended to \(QG \) defines an isomorphism \(\chi: QGe_\phi \to F_\phi \). Define the subgroup \(G_\phi \) of \(G \) by \(G_\phi = \{ s \in G: \chi(s) = 1 \} = \{ s \in G: \phi(s) = \phi(1) \} \).

Choose \(s_\phi \in G \) generating the group \(G/G_\phi \) of order say \(g \); then \(\chi(s_\phi) \) is a primitive \(g \)th root of 1.

Let \(\omega = \sum a s_a^{-1}, (a, f) = 1, 1 < a < f \). Then \(\chi(\omega) = M(\chi) \). Thus \(M(\chi) \neq 0 \) for all imaginary characters \(\chi \) of \(G \) iff \(\omega e^\omega = e^\omega = \frac{1}{2}(1 - s_\phi^{-1}) \) is not a zero divisor of \(QGe_\phi \).

3. Group ring elements \(\alpha_\phi \). For each irreducible rational character \(\phi \) of \(G \) define the nonzero element \(\alpha_\phi \) of \(ZG \) by

\[
\alpha_\phi = \sigma(\phi) \prod_q (1 - s_\phi^g / q).
\]

Here \(\sigma(\phi) \) is the sum of the elements of \(G_\phi \) and the product is taken over all primes \(q \) dividing \(g \).

(3.1) Lemma. Let \(\phi \) and \(\psi \) be irreducible rational characters of \(QG \). The product of \(\alpha_\phi \) with \(e_\psi \) is

\[
\alpha_\phi e_\psi = |G_\phi| \prod_q (e_\phi - (s_\phi e_\phi)^g / q) \quad \text{if} \quad \phi = \psi,
\]

\[
= 0 \quad \text{if} \quad \phi \neq \psi.
\]

Thus, if the complex character \(\chi \) determines \(\phi \), \(M(\chi) = 0 \) iff \(\omega e_\phi = 0 \) iff \(\omega \alpha_\phi = 0 \).

Proof. Suppose \(G_\phi \subset G_\psi \). Since \(t \in G_\psi \) implies \(te_\psi = e_\psi \), we have

\[
\alpha_\phi e_\psi = |G_\phi| \prod_q (e_\psi - (s_\phi e_\psi)^g / q).
\]

If \(G_\phi = G_\psi \) (so \(\phi = \psi \)), we obtain the desired result. If \(G_\phi \) is a proper subgroup of \(G_\psi \), there exists a prime \(q \) dividing \(g \) such that \(s_\phi^g / q \in G_\psi \). For such \(q \), the factor \(e_\psi - (s_\phi e_\psi)^g / q = 0 \).
On the other hand, suppose G_ϕ is not contained in G_ψ. Then the order of $G_\phi/G_\psi \cap G_\psi$ is $h > 1$. Choose $t \in G_\phi$ generating $G_\phi/G_\psi \cap G_\psi$. Since $h > 1$, $\sum_{i=1}^h t^i e_\psi = 0$ and then $\sigma(\phi)e_\psi = 0$. Thus $\alpha_\phi e_\psi = 0$ if $\phi \neq \psi$. The last assertion of (3.1) is now clear.

(3.2) Proposition. Suppose $f = p^r$, p prime. If χ is a nontrivial faithful character (i.e. $G_\phi = 1$) of $(Z/fZ)^\chi$, then $M(\chi) \neq 0$.

Proof. Define a ring homomorphism $c: ZG \to Z/fZ$ by $c(\sum a_\phi s_\phi) = \sum a_\phi s_\phi \mod fZ$, $a_\phi \in Z$, $s_\phi \in G$. For any integer a prime to f, one has $(s_\phi - a)\omega \in f \cdot ZG$. Therefore $\omega \alpha_\phi \equiv \omega(\alpha_\phi) \mod f \cdot ZG$. Now $c(\alpha_\phi) = \Pi_q (1 - b^g/q) \mod fZ$, where $s_b = s_\phi$ and $g = (p-1)p^{r-1}$. The factor $1 - b^g/q$ is prime to p for $q \neq p$, and p^{r-1} is the exact power of p dividing $1 - b^g/q$ when $q = p$. Thus $\omega \alpha_\phi \equiv 0 \mod f \cdot ZG$, so $\omega \alpha_\phi \neq 0$; finally $M(\chi) \neq 0$ by (3.1).

(3.3) Proposition. If $f = p^r$ and χ is an imaginary character with conductor f and order a power of 2, then $M(\chi) \neq 0$.

Proof. Since the order g of χ is a power of 2, $\alpha_\phi = 2e^{-\sigma(\phi)}$. Then

$$\alpha_\phi \omega = 0 \iff s_{-1} \sigma(\phi) \omega = \sigma(\phi) \omega.$$ \hspace{1cm} (3.4)

Let $\theta: ZG \to Z[G_\phi]$, be the canonical projection and suppose γ is a generator of G/G_ϕ. Set $\theta(\omega) = \sum_{i=1}^g n(i)\gamma^i$. If (3.4) holds, then $n(i) = n(i^*)$ where i^* is defined by $\gamma^i = s_{-1} \gamma^{i^*}$. Note $i^* \neq i$. Since $n(i) + n(i^*) = |G_\phi|$,

$$2n(i) = |G_\phi|, \quad i = 1, \ldots, g.$$ \hspace{1cm} (3.5)

If p is odd, then G_ϕ has odd order (conductor of χ is f) and (3.5) is impossible. Suppose $f = 2^r$. We take $r \geq 3$; if $f = 4$, (3.5) clearly is false. Now $G_\phi = \{s_1, s_1 s_5^{2^{r-3}}\}$. Thus $n(g) = 1 + (-1)5^{2^{r-3}}$ which is not 2^r as required by (3.5). Hence $\alpha_\phi \omega \neq 0$.

REFERENCE

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801