Nonnegative idempotent matrices
HTML articles powered by AMS MathViewer
- by Ralph DeMarr
- Proc. Amer. Math. Soc. 45 (1974), 185-188
- DOI: https://doi.org/10.1090/S0002-9939-1974-0354738-X
- PDF | Request permission
Abstract:
Elementary ideas in the theory of partially ordered linear algebras are used to describe the structure of nonnegative idempotent matrices. In particular, we obtain a kind of “spectral decomposition” theorem for such matrices.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Peter Flor, On groups of non-negative matrices, Compositio Math. 21 (1969), 376–382. MR 257115
- R. J. Plemmons and R. E. Cline, The generalized inverse of a nonnegative matrix, Proc. Amer. Math. Soc. 31 (1972), 46–50. MR 285541, DOI 10.1090/S0002-9939-1972-0285541-5
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 185-188
- MSC: Primary 15A48
- DOI: https://doi.org/10.1090/S0002-9939-1974-0354738-X
- MathSciNet review: 0354738