A GENERALIZATION OF BANACH'S CONTRACTION PRINCIPLE

Lj. B. ĆIRIĆ

ABSTRACT. Let $T: M \to M$ be a mapping of a metric space (M, d) into itself. A mapping T will be called a quasi-contraction iff $d(Tx, Ty) \leq q \cdot \max\{d(x, y); d(x, Tx); d(y, Ty); d(x, Ty); d(y, Tx)\}$ for some $q < 1$ and all $x, y \in M$. In the present paper the mappings of this kind are investigated. The results presented here show that the condition of quasi-contraction implies all conclusions of Banach's contraction principle. Multi-valued quasi-contractions are also discussed.

1. Introduction. The well-known Banach's contraction mapping principle states that if $T: M \to M$ is a contraction on M (i.e. $d(Tx, Ty) \leq q \cdot d(x, y)$ for some $q < 1$ and all $x, y \in M$) and M is complete, then

(10) T has a unique fixed point u in $M,$
(20) $\lim_{n \to \infty} T^n x = u,$ and
(30) $d(T^n x, u) \leq q^n (1 - q)^{-1} d(x, Tx)$ for every $x \in M.$

A number of generalizations of this result have appeared [1], [2], [3], [7], [8], [9], [12]. In [2] we considered generalized contractions, defined as follows.

A mapping $T: M \to M$ is said to be a generalized contraction iff for every $x, y \in M$ there exist nonnegative numbers q, r, s and t, which may depend on both x and y, such that $\sup\{q + r + s + 2t: x, y \in M\} < 1$ and

\[d(Tx, Ty) \leq q \cdot d(x, y) + r \cdot d(x, Tx) + s \cdot d(y, Ty) + t \cdot [d(x, Ty) + d(y, Tx)]. \]

(A)

S. Nadler [10] has extended Banach's contraction principle to multi-valued contractions. Many extensions of Nadler's result have been derived in recent years [4], [6], [11], [13]. In [4] we proved some fixed-point theorems for a class of multi-valued generalized contractions—the maps which include the single-valued generalized contractions.

Received by the editors January 17, 1973.

Key words and phrases. Quasi-contractions, multi-valued quasi-contractions, fixed-point theorems.
The purpose of this paper is to extend some results concerning generalized contractions of [2] and [4] to quasi-contractions. In §2 fixed-point theorems for single-valued quasi-contractions are proved and an example is given to show that the results established here are indeed extensions. In §3 it is shown that for multi-valued quasi-contractions a similar result is valid.

2. Quasi-contractions. Let T be a mapping of a metric space M into itself. For $A \subset M$ let $\delta(A) = \sup \{d(a, b) : a, b \in A\}$ and for each $x \in M$, let

$$O(x, n) = \{x, Tx, \ldots, T^n x\}, \quad n = 1, 2, \ldots,$$

$$O(x, \infty) = \{x, Tx, \ldots\}.$$

A space M is said to be T-orbitally complete iff every Cauchy sequence which is contained in $O(x, \infty)$ for some $x \in M$ converges in M (cf. [5]).

Definition 1. A mapping $T : M \to M$ of a metric space M into itself is said to be a quasi-contraction iff there exists a number $q, 0 < q < 1$, such that

$$(B) \quad d(Tx, Ty) \leq q \cdot \max \{d(x, y); d(x, Tx); d(y, Ty); d(x, Ty); d(y, Tx)\}$$

holds for every $x, y \in M$.

It is clear that condition (A) implies (B). The following example shows that a quasi-contraction need not be a generalized contraction.

Example. Let

$$M_1 = \{m/n : m = 0, 1, 3, 9, \ldots ; n = 1, 4, \ldots, 3k + 1, \ldots\},$$

$$M_2 = \{m/n : m = 1, 3, 9, 27, \ldots ; n = 2, 5, \ldots, 3k + 2, \ldots\},$$

and let $M = M_1 \cup M_2$ with the usual metric. Define $T : M \to M$ by

$$Tx = 3x/5, \quad \text{for } x \in M_1,$$

$$= x/8, \quad \text{for } x \in M_2.$$

The mapping T is a quasi-contraction with $q = 3/5$. Indeed, if both x and y are in M_1 or in M_2, then $d(Tx, Ty) \leq (3/5)d(x, y)$. Now let x be, for example, in M_1 and y in M_2. Then

$$x > \frac{5}{24}y \quad \text{implies} \quad d(Tx, Ty) = \frac{3}{5} \left(x - \frac{5}{24} y \right) \leq \frac{3}{5} \left(x - \frac{1}{8} y \right) = \frac{3}{5} d(x, Ty);$$

$$x < \frac{5}{24}y \quad \text{implies} \quad d(Tx, Ty) = \frac{3}{5} \left(\frac{5}{24} y - x \right) \leq \frac{3}{5} (y - x) = \frac{3}{5} d(x, y).$$

Therefore, T on M satisfies the condition
\[d(Tx, Ty) \leq (3/5) \max \{ d(x, y); d(x, Ty); d(y, Tx) \} \]

and hence (B).

To show that \(T \) is not a generalized contraction on \(M \), let \(x = 1 \) and \(y = \frac{1}{2} \). Then we have

\[
q \cdot d(x, y) + r \cdot d(x, Tx) + s \cdot d(y, Ty) + t \cdot (d(x, Ty) + d(y, Tx))
\]

\[
= q \cdot \frac{1}{2} + r \cdot \frac{2}{5} + s \cdot \frac{7}{15} + t \cdot \frac{83}{80}
\]

\[
< (q + r + s + 2t) \cdot \frac{83}{160} < \frac{83}{160} < \frac{43}{80} = d(Tx, Ty),
\]

as \(q + r + s + 2t < 1 \), and we see that condition (A) is not satisfied.

Before stating the fixed-point theorem for quasi-contractions we shall prove two lemmas on these mappings. The first of these lemmas is fundamental.

Lemma 1. Let \(T \) be a quasi-contraction on \(M \) and let \(n \) be any positive integer. Then for each \(x \in M \) and all positive integers \(i \) and \(j \), \(i, j \in \{1, 2, \ldots, n\} \) implies \(d(T^i x, T^j x) \leq q \cdot \delta[O(x, n)] \).

Proof. Let \(x \in M \) be arbitrary, let \(n \) be any positive integer and let \(i \) and \(j \) satisfy the condition of Lemma 1. Then \(T^{i-1} x, T^i x, T^{j-1} x, T^j x \in O(x, n) \) (where it is understood that \(T^0 x = x \)) and since \(T \) is a quasi-contraction, we have

\[
d(T^i x, T^j x) = d(T T^{i-1} x, T T^{j-1} x)
\]

\[
\leq q \cdot \max \{ d(T^{i-1} x, T^{j-1} x); d(T^{i-1} x, T^i x); d(T^{j-1} x, T^j x); \\
\quad d(T^{i-1} x, T^j x); d(T^i x, T^{j-1} x) \}
\]

\[
\leq q \cdot \delta[O(x, n)],
\]

which proves the lemma.

Remark. From this lemma it follows that if \(T \) is a quasi-contraction and \(x \in M \), then for every positive integer \(n \) there exists a positive integer \(k \leq n \), such that \(d(x, T^k x) = \delta[O(x, n)] \).

Lemma 2. If \(T \) is a quasi-contraction on \(M \), then

\[
\delta[O(x, \infty)] \leq (1/(1 - q)) d(x, Tx)
\]

holds for all \(x \in M \).

Proof. Let \(x \in M \) be arbitrary. Since \(\delta[O(x, 1)] \leq \delta[O(x, 2)] \leq \cdots \), we
see that $\delta(O(x, \infty)) = \sup \{\delta(O(x, n)) : n \in \mathbb{N}\}$. The lemma will follow if we show that $\delta(O(x, n)) \leq (1/(1 - q))d(x, Tx)$ for all $n \in \mathbb{N}$.

Let n be any positive integer. From the remark to the previous lemma, there exists $T^k x \in O(x, n)$ ($1 \leq k \leq n$) such that $d(x, T^k x) = \delta(O(x, n))$. Applying a triangle inequality and Lemma 1, we get

$$d(x, T^k x) \leq d(x, Tx) + d(Tx, T^k x) \leq d(x, Tx) + q \cdot \delta(O(x, n))$$

$$= d(x, Tx) + q \cdot d(x, T^k x).$$

Therefore, $\delta(O(x, n)) = d(x, T^k x) \leq (1/(1 - q))d(x, Tx).$ Since n was arbitrary, the proof is completed.

Now we can state our main result.

Theorem 1. Let T be a quasi-contraction on a metric space M and let M be T-orbitally complete. Then

(a) T has a unique fixed point u in M,

(b) $\lim_n T^n x = u$, and

(c) $d(T^n x, u) \leq (q^n/(1 - q))d(x, Tx)$ for every $x \in M$.

Proof. Let x be an arbitrary point of M. We shall show that the sequence of iterates $\{T^n x\}$ is a Cauchy sequence.

Let n and m ($n < m$) be any positive integers. Since T is a quasi-contraction, it follows from Lemma 1 that

$$d(T^n x, T^m x) = d(TT^{n-1} x, T^{m-n+1} T^{n-1} x) \leq q \cdot \delta(O(T^{n-1} x, m - n + 1)).$$

According to the remark to Lemma 1, there exists an integer k_1, $1 \leq k_1 \leq m - n + 1$, such that

$$\delta(O(T^{n-1} x, m - n + 1)) = d(T^{n-1} x, T^{k_1} T^{n-1} x).$$

Again, by Lemma 1, we have

$$d(T^{n-1} x, T^{k_1} T^{n-1} x) = d(TT^{n-2} x, T^{k_1+1} T^{n-2} x)$$

$$\leq q \cdot \delta(O(T^{n-2} x, k_1 + 1))$$

$$\leq q \cdot \delta(O(T^{n-2} x, m - n + 2)).$$

Therefore, we have the following system of inequalities.

$$d(T^n x, T^m x) \leq q \cdot \delta(O(T^{n-1} x, m - n + 1)) \leq q^2 \cdot \delta(O(T^{n-2} x, m - n + 2)).$$

Proceeding in this manner, we obtain
Then it follows from Lemma 2 that

\[d(T^n x, T^m x) \leq (q^n/(1 - q))d(x, Tx). \]

Since \(\lim_n q^n = 0 \), \(\{T^n x\} \) is a Cauchy sequence.

Again, \(M \) being \(T \)-orbitally complete, \(\{T^n x\} \) has a limit \(u \) in \(M \). To prove that \(Tu = u \), let us consider the following inequalities.

\[d(u, Tu) \leq d(u, T^{n+1} x) + d(T^{n+1} x, Tu) \]
\[\leq d(u, T^{n+1} x) + q \cdot \max\{d(T^n x, u), d(T^n x, T^{n+1} x); d(u, Tu); d(T^n x, Tu); d(T^{n+1} x, u)\} \]
\[\leq d(u, T^{n+1} x) + q \cdot [d(T^n x, T^{n+1} x) + d(T^n x, u) \]
\[+ d(u, Tu) + d(T^{n+1} x, u)]. \]

Hence

\[d(u, Tu) \leq \frac{1}{1 - q} [(1 + q)d(u, T^{n+1} x) + q \cdot d(u, T^n x) + q \cdot d(T^n x, T^{n+1} x)]. \]

Since \(\lim_n T^n x = u \), this shows that \(d(u, Tu) = 0 \), i.e. \(u \) is a fixed point under \(T \). The uniqueness follows from the quasi-contractivity of \(T \). So we have proved (a) and (b), as \(x \) was arbitrary. Letting \(m \) tend to infinity in (1), we obtain the inequality (c).

This completes the proof of the theorem.

The next result readily follows from the above theorem.

Theorem 2. Let \(T \) be a mapping of a metric space \(M \) into itself and let \(M \) be \(T \)-orbitally complete. If there exists a positive integer \(k \) such that the iteration \(T^k \) is a quasi-contraction, then

(a') \(T \) has a unique fixed point \(u \) in \(M \),

(b') \(\lim_n T^n x = u \), and

(c') \(d(T^n x, u) \leq q^m a(x)/(1 - q) \) for every \(x \in M \),

where \(a(x) = \max\{d(T^i x, T^{i+k} x); i = 0, 1, \ldots, k - 1\} \) and \(m = E(n/k) \) is the greatest integer not exceeding \(n/k \).

Proof. Since \(T^k \) has a unique fixed point \(u \) and \(T^k(Tu) = T(T^k u) = Tu \), it follows that \(Tu = u \). Its uniqueness is obvious. To show (c'), let \(n \) be any integer. Then \(n = m \cdot k + j \), \(0 \leq j < k \), \(m \geq 0 \), and for every \(x \in M \), \(T^n x = (T^k)^m T^j x \). Since \(T^k \) is a quasi-contraction, it follows from part (c) of Theorem 1 that
\[d(T^n x, u) \leq \frac{q^m}{1 - q} d(T^i x, \ T^k T^i x) \]
\[\leq \frac{q^m}{1 - q} \max\{d(T^i x, \ T^k T^i x): i = 0, 1, \cdots, k - 1\}, \]
which proves \((c')\), and hence \((b')\). This completes the proof of the theorem.

Note that Theorem 2.5 (Theorem 2.6) of [2] is a special case of Theorem 1 (Theorem 2). The example following Definition 1 shows that Theorem 1 is more general than Theorem 2.5 of [2]. In that example \(M\) is \(T\)-orbitally complete and \(u\) is a fixed point under \(T\).

3. Multi-valued quasi-contractions. We shall now recall some terminologies. Let \((M, d)\) be a metric space and let \(A, B\) be any subsets of \(M\). We denote \(D(A, B) = \inf\{d(a, b): a \in A, \ b \in B\}\), \(\rho(A, B) = \sup\{d(a, b): a \in A, \ b \in B\}\), \(BN(M) = \{A: \emptyset \neq A \subset M \ and \ \delta(A) < +\infty\}\). Let \(F: M \rightarrow M\) be a point to set correspondence and let \(x_0 \in M\). An orbit of \(F\) at \(x_0\) is a sequence \(\{x_n: x_n \in Fx_{n-1}, n = 1, 2, \cdots\}\). A space \(M\) is said to be \(F\)-orbitally complete iff every Cauchy sequence which is a subsequence of an orbit of \(F\) at \(x\) for some \(x \in M\), converges in \(M\). Among the results established in [4] was the following: if \(F: M \rightarrow BN(M)\) satisfies

\[(C) \ \rho(Fx, Fy) \leq q \cdot \max\{d(x, y); \ \rho(x, Fx); \ \rho(y, Fy); D(x, y); D(y, Fx)\} \]
for some \(q < 1\) and if \(M\) is \(F\)-orbitally complete, then \(F\) has a unique fixed point \(u\) with \(Fu = \{u\}\) and for each \(x_0 \in M\) there exists an orbit \(\{x_n\}\) of \(F\) at \(x_0\) such that \(\lim x_n = u\). The following is an extension of the above statement.

Theorem 3. Let \(F: M \rightarrow BN(M)\) be a multi-valued mapping on a metric space \(M\) and let \(M\) be \(F\)-orbitally complete. If \(F\) satisfies

\[(D) \ \rho(Fx, Fy) \leq q \cdot \max\{d(x, y); \ \rho(x, Fx); \ \rho(y, Fy); D(x, y); D(y, Fx)\} \]
for some \(q < 1\) and all \(x, y \in M\), then

(i) \(F\) has a unique fixed point \(u\) in \(M\) and \(Fu = \{u\}\),

(ii) for each \(x_0 \in M\) there exists an orbit \(\{x_n\}\) of \(F\) at \(x_0\) such that

\[\lim x_n = u, \] and

(iii) \(d(x_n, u) \leq ((q^{1-a}n/(1 - q^{1-a}))d(x_0, x_1), \)
where \(a < 1\) is any fixed positive number.

Proof. Let \(a \in (0, 1)\) be any number. Define a single-valued mapping \(T: M \rightarrow M\) as follows: for each \(x \in M\) let \(Tx\) be a point of \(Fx\), which satisfies
\[d(x, Tx) \geq q^{a} \cdot \rho(x, Fx) \] A mapping \(T \) is then a quasi-contraction with \(q_1 = q^{1-a} \). Indeed, for every \(x, y \in M \) we have
\[
d(Tx, Ty) \leq \rho(Fx, Fy)
\]
\[
\leq q \cdot q^{-a} \max \{ q^a d(x, y); q^a \rho(x, Fx); q^a \rho(y, Fy); q^a D(x, Fy); q^a D(y, Fx) \}
\]
\[
\leq q^{1-a} \max \{ d(x, y); d(x, Tx); d(y, Ty); d(x, Ty); d(y, Tx) \},
\]
which means that \(T \) is a quasi-contraction. Clearly \(u = Tu \) implies \(u \in Fu \).
Since \(F \) satisfies (D), \(u \in Fu \) implies \(\rho(Fu, Fu) \leq q \cdot \rho(u, Fu) \). This may happen only if \(Fu = \{ u \} \). Therefore, \(u \in M \) is a fixed point of \(T \) iff \(u \) is a fixed point of \(F \). Since for each \(x \in M \) the sequence \(\{ T^n x \} \) is an orbit of \(F \) at \(x \), the statements of Theorem 3 follow from Theorem 1.

REFERENCES

1. V. W. Bryant, A remark on a fixed point theorem for iterated mappings, Amer.
2. Lj. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst.
3. ———, Fixed point theorems for mappings with a generalized contractive
4. ———, Fixed points for generalized multi-valued contractions, Mat. Ves-
8. L. F. Guseman, Jr., Fixed point theorems for mappings with a contractive
405–408. MR 41 #2487.
10. S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30
(4) 5 (1972), 26–42.
12. V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate,