A generalization of Banach’s contraction principle
HTML articles powered by AMS MathViewer
- by Lj. B. Ćirić
- Proc. Amer. Math. Soc. 45 (1974), 267-273
- DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2
- PDF | Request permission
Abstract:
Let $T:M \to M$ be a mapping of a metric space $(M,d)$ into itself. A mapping $T$ will be called a quasi-contraction iff $d(Tx,Ty) \leqslant q\max \{ d(x,y);d(x,Tx);d(y,Ty);d(x,Ty);d(y,Tx)\}$ for some $q < 1$ and all $x,y \in M$. In the present paper the mappings of this kind are investigated. The results presented here show that the condition of quasi-contractivity implies all conclusions of Banach’s contraction principle. Multi-valued quasi-contractions are also discussed.References
- V. W. Bryant, A remark on a fixed-point theorem for iterated mappings, Amer. Math. Monthly 75 (1968), 399–400. MR 226621, DOI 10.2307/2313440
- Ljubomir B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) 12(26) (1971), 19–26. MR 309092
- Ljubomir B. Ćirić, Fixed point theorems for mappings with a generalized contractive iterate at a point, Publ. Inst. Math. (Beograd) (N.S.) 13(27) (1972), 11–16. MR 346765
- Ljubomir B. Ćirić, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9(24) (1972), 265–272. MR 341460
- Ljubomir Ćirić, On contraction type mappings, Math. Balkanica 1 (1971), 52–57. MR 324494
- L. S. Dube and S. P. Singh, On multi-valued contraction mappings, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 14(62) (1970), 307–310 (1971). MR 322841
- Michael Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7–10. MR 120625, DOI 10.1090/S0002-9939-1961-0120625-6
- L. F. Guseman Jr., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 26 (1970), 615–618. MR 266010, DOI 10.1090/S0002-9939-1970-0266010-3
- R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405–408. MR 257838, DOI 10.2307/2316437
- Sam B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488. MR 254828, DOI 10.2140/pjm.1969.30.475
- Simeon Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26–42 (English, with Italian summary). MR 0309095
- V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc. 23 (1969), 631–634. MR 250292, DOI 10.1090/S0002-9939-1969-0250292-X
- R. E. Smithson, Fixed points for contractive multifunctions, Proc. Amer. Math. Soc. 27 (1971), 192–194. MR 267564, DOI 10.1090/S0002-9939-1971-0267564-4
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 267-273
- MSC: Primary 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2
- MathSciNet review: 0356011