## A generalization of Banach’s contraction principle

HTML articles powered by AMS MathViewer

- by Lj. B. Ćirić PDF
- Proc. Amer. Math. Soc.
**45**(1974), 267-273 Request permission

## Abstract:

Let $T:M \to M$ be a mapping of a metric space $(M,d)$ into itself. A mapping $T$ will be called a quasi-contraction iff $d(Tx,Ty) \leqslant q\max \{ d(x,y);d(x,Tx);d(y,Ty);d(x,Ty);d(y,Tx)\}$ for some $q < 1$ and all $x,y \in M$. In the present paper the mappings of this kind are investigated. The results presented here show that the condition of quasi-contractivity implies all conclusions of Banach’s contraction principle. Multi-valued quasi-contractions are also discussed.## References

- V. W. Bryant,
*A remark on a fixed-point theorem for iterated mappings*, Amer. Math. Monthly**75**(1968), 399–400. MR**226621**, DOI 10.2307/2313440 - Ljubomir B. Ćirić,
*Generalized contractions and fixed-point theorems*, Publ. Inst. Math. (Beograd) (N.S.)**12(26)**(1971), 19–26. MR**309092** - Ljubomir B. Ćirić,
*Fixed point theorems for mappings with a generalized contractive iterate at a point*, Publ. Inst. Math. (Beograd) (N.S.)**13(27)**(1972), 11–16. MR**346765** - Ljubomir B. Ćirić,
*Fixed points for generalized multi-valued contractions*, Mat. Vesnik**9(24)**(1972), 265–272. MR**341460** - Ljubomir Ćirić,
*On contraction type mappings*, Math. Balkanica**1**(1971), 52–57. MR**324494** - L. S. Dube and S. P. Singh,
*On multi-valued contraction mappings*, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.)**14(62)**(1970), 307–310 (1971). MR**322841** - Michael Edelstein,
*An extension of Banach’s contraction principle*, Proc. Amer. Math. Soc.**12**(1961), 7–10. MR**120625**, DOI 10.1090/S0002-9939-1961-0120625-6 - L. F. Guseman Jr.,
*Fixed point theorems for mappings with a contractive iterate at a point*, Proc. Amer. Math. Soc.**26**(1970), 615–618. MR**266010**, DOI 10.1090/S0002-9939-1970-0266010-3 - R. Kannan,
*Some results on fixed points. II*, Amer. Math. Monthly**76**(1969), 405–408. MR**257838**, DOI 10.2307/2316437 - Sam B. Nadler Jr.,
*Multi-valued contraction mappings*, Pacific J. Math.**30**(1969), 475–488. MR**254828**, DOI 10.2140/pjm.1969.30.475 - Simeon Reich,
*Fixed points of contractive functions*, Boll. Un. Mat. Ital. (4)**5**(1972), 26–42 (English, with Italian summary). MR**0309095** - V. M. Sehgal,
*A fixed point theorem for mappings with a contractive iterate*, Proc. Amer. Math. Soc.**23**(1969), 631–634. MR**250292**, DOI 10.1090/S0002-9939-1969-0250292-X - R. E. Smithson,
*Fixed points for contractive multifunctions*, Proc. Amer. Math. Soc.**27**(1971), 192–194. MR**267564**, DOI 10.1090/S0002-9939-1971-0267564-4

## Additional Information

- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**45**(1974), 267-273 - MSC: Primary 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2
- MathSciNet review: 0356011