THE ZYGMUND CONDITION FOR
POLYGONAL APPROXIMATION

D. J. NEWMAN

ABSTRACT. We investigate the class of functions which can be uniformly approximated to within $O(1/n)$ by a canonical choice of piecewise $(n-1)$-piece linear functions. The class turns out identical to the Zygmund class.

The problem of the rate of approximation by polygonal, or piecewise linear, functions was recently investigated in [1]. The gist of the story is that polygonal functions with vertices at 0, $1/n$, $2/n$, \ldots, 1 do roughly the same job as nth degree polynomials. For example $\text{Lip } \alpha (0 < \alpha < 1)$, is equivalent to approximability to within $n^{-\alpha}$.

What is missing is the case of n^{-1}. It was shown by Zygmund that for the polynomial case the condition for n^{-1} accuracy is exactly that $f(x + h) - 2f(x) + f(x - h) = O(h)$. We show, in this note, that this very same condition is the correct one for polygonal fits.

Notation. $P_n(x)$ denotes any polygonal function with vertices at 0, $1/n$, $2/n$, \ldots, 1. Given any $f(x)$ we denote by $P_{n,f}(x)$ that particular polygonal function which agrees with it at 0, $1/n$, $2/n$, \ldots, 1. Finally we denote by the class Z all continuous $f(x)$ such that, whenever $h > 0$, $x - h > 0$, $x + h < 1$, we have $|f(x + h) - 2f(x) + f(x - h)| \leq h$.

A. If $f(x) \in Z$ then $|f(x) - P_{n,f}(x)| \leq 1/2n$.

B. If, for every n, we can find a $P_n(x)$ for which $|f(x) - P_n(x)| \leq 1/48n$ throughout $[0, 1]$ then $f(x) \in Z$.

In the proofs we use the fact that if $x - h$, x, $x + h$ lie in an interval $[k/n, (k + 1)/n]$, then $P_n(x + h) - 2P_n(x) + P_n(x - h) = 0$ so that $|f(x + h) - 2f(x) + f(x - h)| \leq h$ is equivalent to $|r(x + h) - 2r(x) + r(x - h)| \leq h$ where $r = f - P_n$.

Proof of A. Let x be a point where $|f - P_{n,f}|$ takes its maximum and set $k = [nx]$. Thus x lies in $[k/n, (k + 1)/n]$ and we may assume without loss of

Received by the editors June 22, 1973.

Key words and phrases. Approximation, Zygmund class, piecewise linear functions.

1 Supported in part by AFOSR 72-2380A.

Copyright © 1974, American Mathematical Society

303
generality that it lies in the first half of the interval. Choosing \(h = x - k/n \), then, insures that \(x - h, x, x + h \) all lie in \([k/n, (k + 1)/n]\). Thus we have, with \(r = f - P_n f \), that

\[
|r(x + h) - 2r(x) + r(x - h)| \leq h \leq 1/2n.
\]

Furthermore \(r(x - h) = r(k/n) = 0 \) while \(|r(x)| \geq |r(x + h)| \) so that \(|r(x)| \leq |r(x + h) - 2r(x) + r(x - h)| \leq 1/2n \) and the result follows upon remembering the maximality of \(r(x) \).

Proof of B. Let \(h > 0, x - h > 0, x + h < 1 \). Choose \(n \) as the largest integer for which \([n(x - h)] = [n(x + h)]\). It follows that \([2n(x - h)] < [2n(x + h)]\) and \([3n(x - h)] < [3n(x + h)]\) so that \((n(x - h), n(x + h))\) contains a fraction with denominator 2 and another fraction with denominator 3 (they are not the same fraction or else \((n(x - h), n(x + h))\) would contain an integer). The difference between these fractions being at least \(1/6 \) gives the inequality \(2nh \geq 1/6 \). Hence we have, with \(r(x) = f(x) - P_n(x) \),

\[
|r(x' + h) - 2r(x) + r(x - h)| \leq \frac{1}{48n} + \frac{2}{48n} + \frac{1}{48n} = \frac{1}{12n} \leq h.
\]

This suffices by our earlier remark since \(x - h, x, x + h \) all lie in \([k/n, (k + 1)/n]\) for \(k = [n(x - h)]\).

It is important to note that we really need all \(n \) in \(B \). Unlike the situation for polynomials, approximation can hold for all even \(n \) without \(Z \). For \(f(x) = |x - \frac{1}{2}| \log(1/|x - \frac{1}{2}|) \) we get \(|f - P_{n,f}| \leq c/n \) for \(n \) even, but

\[
f\left(\frac{1}{2} + h\right) - 2f\left(\frac{1}{2}\right) + f\left(\frac{1}{2} - h\right) = 2h \log(1/h) \neq O(h).
\]

REFERENCE

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY, NEW YORK, NEW YORK 10033