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A GALOIS CONNECTION

FOR REDUCED INCIDENCE ALGEBRAS

ROBERT L. DAVIS

ABSTRACT.     If (V = j 1, • • • , n |,  D CN x N,  and  F  is an equivalence

relation on the "entries" of D  the reduced incidence space  g(f )  is the

set of all real matrices A   with support in D   and such that a.. = a      when-
rr ij        rs

ever (i, j)F(r, s).   Let S(D)   be the lattice of all subspaces of R     having

support contained in D,  and S(D)  that of all equivalences on  D.   Then the

map  g  defined above is Galois connected with a map / which sends a sub-

space  S  into the equivalence f[S)  having (¿, /)l/\S)j (r, s)  whenever all  A

in S have  a..-a    .   The Galois closed subspaces (i.e. reduced incidence spaces)
ij rs

are shown to be just those subspaces which are closed under Hadamard

multiplication, and if S = g(F)   is also a subalgebra then its support D  must

be a transitive relation.   Consequences include not only pinpointing the role

of Hadamard multiplication in characterizing reduced incidence algebras, but

methods for constructing interesting new types of algebras of matrices.

In Doubilet, Rota and Stanley's study [3] (hereafter referred to as D-R-S)

of incidence algebras and how they lead to a coherent theory of generating

functions the "main working tool" is the notion of reduced incidence algebra.

One of the authors' theorems characterized such reduced incidence algebras,

among certain subalgebras of the incidence algebra  l(P) of a partial order  P,

in terms of a pointwise multiplication which seems to have no other use in the

theory.

When the partial order is finite the incidence algebra can be taken to be

an algebra of matrices under ordinary matrix multiplication, while pointwise

multiplication is usually called Hadamard multiplication.   This note eluci-

dates the somewhat surprising role of Hadamard multiplication by considering

arbitrary subspaces of the vector space of all real nx n matrices.   Those

which are in a natural way "reduced incidence spaces" are just those which

are Galois closed in a simple Galois correspondence.   Transferring the D-R-S
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180 R. L. DAVIS

methods to this more general situation permits deduction, in the finite case,

of their theorem (under weaker hypotheses) and yields further information

about new types of matrix algebras.

2.   The basic type of Galois correspondence.   Let  M    be the space of

all real n x n matrices.   For N = fl, 2, ■ • • , n\ let  D C N x N be any fixed

subset of "entries" (an "incidence pattern", or relation on  N).   It is con-

venient to write "if for the ordered pair (entry) (z, /').

The support, Supp A, of any A   in  M     is the set of entries  ij for which

a .. 4 0,  and if S is any subspace of M    its support is the union Supp S =

(JSSupp A: A £ S\.   For any D in N x N it is natural to call the vector space,

/(D),  of all A  with Supp A CD the incidence space of the relation  D.

For any given  D C N x N the set £(D)  of all those subspaces  S of M

having Supp S Ç D  is closed under intersection and sum and hence is a sub-

lattice of the lattice of all subspaces of M  .
r n

Call  fe(D) the lattice of all equivalence relations on the set D, ordered

by relation inclusion (here denoted by <).   ë(D)  is a well-known complete

lattice with  infs  given by intersection and  sups  as the intersections of all

simultaneously containing equivalences.

Now for each A  in /(D) write F„(A) (or just EiA) if there is no need to

emphasize the role of D) for the inverse-image equivalence defined on D  by

A: EAA) = \iij, rs) £ D x D: a.. = a    \.   Then if F is any equivalence in

ê(D) the set of "F-matrices" is gD(F) = giF)= \A £ /(D): Ed(A) > Fl.

On the other hand if S is any subspace in =L(D)  the "equivalence de-

fined on  D by S" is: fDiS) = fis) = (\{E DiA): A £ S}.   Clearly  ij[fiS)]uv if

and only if  a.. = a      for every  A  in  S.
' ij uv '

Proposition 1.   For each subset D of N x N  the pair ifD, gD) defines

a Galois connection between £(D)  and ë(D)  in which the map g  is infective

and f surjective; furthermore, any  giF) may be characterized as the largest

subspace S in £(D) for which fiS) = F.

Proof.   Clearly each  fiS) is in  ê(D),  being an intersection of equiva-

lences on  D.   On the other hand,  if A  and B are in  /(D) with both  EiA)  and

EiB) > F and if  c and d are any real numbers then   cA + dB  is in  /(D)  and

EicA + dB) > F,  so each giF) is a subspace in 3l(D).

It is easy to see that both  / and  g are anti-isotone (nonincreasing)

functions, and also that the composites are extensive:  fgiF) > F and  gfiS) D

S for all S and F.

In fact, for any   F in  ê(D)  there is an  A   in   /(D)   with  E(A) = F.   (If F
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has  k equivalence classes then such an A  can be written down using the

integers   1, 2, • • • , k to mark the classes.)   Thus it is clear that for any  F,

fg(F) = \E(A): E(A) > F\ = F,  so that g is injective and / surjective.

Hence (see, e.g. [l])  / and g define a Galois connection;  fg and  gf

are closure operators on  ©(D)  and £(D)  respectively.   The closure lattices

L(D),  consisting of spaces  S tot which  gf(S) = S, and  &(D) (which in this

instance is all of_G(D))  are anti-isomorphic under the inverse maps  / (re-

striction of  / to X)  and  g = g.

The last statement of the proposition is now immediate.

Using this framework depends on identifying the "Galois closed" sub-

spaces of i_(D). To this end denote by A * B the Hadamard product of ma-

trices A and B (that matrix whose if entry is a.b.) and call a set of ma-

trices "Hadamard closed" if it is closed under this product.

Theorem 2. A subspace S in L(D) is Galois closed if and only if it is

Hadamard closed.

Proof.   To say  S  is Galois closed is to say  S is precisely the set of all

F-matrices, where  F is the equivalence defined by  S.   Then if A,  B  are in

S it is clear that A * B  is an   F-matrix, therefore in  S.

For the converse, let  f(S) = F have equivalence classes   K, H,- • •,  in

D.   It suffices to show that  S contains each "indicator"   EK = £JE..: ij £ K],

since these are a basis for g(F).   This can be seen by essentially the same

proof as given by D-R-S for the more restricted case treated in their theorem

(Corollary 5 below).

Just as in their proof it can be shown that for any distinct classes  H

and  K there is a matrix  C = C„ K  in S which is nonzero on entries in  K

and zero on entries in  H.   Hence the Hadamard product of all such   CH K

with  H 4 K  is (apart from a scalar multiple)   the indicator EK,  and it lies in

S by Hadamard closure.

3.   Multiplicativity.   In many applications  the interesting subspaces of M

are those which are subalgebras.   The questions whether a subspace  S is

closed under Hadamard multiplication, and whether S is closed under matrix

multiplication, are essentially independent.   There are subspaces  S that are

both, others that are neither, and others enjoying either one of these types of

closure without the other.

Proposition 3.   // the subspace S of M     is Hadamard closed and also

closed under matrix multiplication then D = Supp S must be a transitive rela-

tion.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 R. L. DAVIS

Proof.   The key here is that Hadamard closure of any subset  S guarantees

that for any A  in  S with a given support there is a nonnegative matrix  A    in

S with the same support, to wit,  A   = A *A.   Then if  ij and  jk are any ele-

ments of Supp  5 there are nonnegative matrices  A  and  B  with  a..>0  and

bjk > 0, so AB = C has  cjk = Za..b.k > 0, hence  ik £ Supp S.

(It is easy to construct subalgebras of M    with nontransitive support.

One example is the algebra  S generated by  F,2 + F., = A   and  B = E 2 .—

e34")

While for each  F  in any  fe(D) the set  giF) of all  F-matrices is always

an Hadamard closed vector space, it is quite unlikely to be a subalgebra even

if D  is transitive.   Any  F for which  giF)  is closed under multiplication will

be called a multiplicative equivalence.

Proposition 4.   // D  is a transitive relation the set &   (D)  of multiplica-

tive equivalences on D is itself a lattice, with sups defined as in fe(D).

iSince infs  are not in general the same it is not a sublattice of ë(D).)

Proof.   This proposition, which for the special case where  D  is a partial

order was given a longer but direct proof by D-R-S, is in fact an immediate

consequence of the anti-isomorphism of  G(D)  and Jf?(D).   If  F  and  G are any

two multiplicative equivalences then  S = giF) and   T = giG) are Hadamard

closed subalgebras of M  .   Thus their intersection  SO T= giF) H giG) =

giF V G)  is a subalgebra and so  F V G is, by definition, multiplicative.

Since  D is transitive the minimal equivalence on  D,  whose  g-image is just

/(D),  is also multiplicative as was shown in [2].   Hence  ë   (D)  is dual to a

"closure system" or "Moore family" (see [l, p. Ill]) and therewith a com-

plete lattice with  sup,   F \/ G, the same as in the lattice of all equivalences.

The inf,  F A G = V \H £ &JD): H < F, H < GÎ, need not be the same as that

in the lattice of all equivalences.

4.   The D-R-S theorem.   The incidence space  /(D)  of any relation  D  is

the image  gAFA of the minimal equivalence  F0  on  D.   It is natural to de-

scribe as a reduced incidence space on a relation  D  the image  gAF) of any

equivalence  F on  D.   Theorem 2 shows that the subspaces of M    which are

reduced incidence spaces are just those which are Hadamard closed, while

Proposition 3 shows that if S = gDiF) is also a subalgebra then  D must be

a transitive relation and  F  a multiplicative equivalence on  D.   In other words

a reduced incidence algebra is in general any image  gAF) of a multiplicative

equivalence on any transitive relation  D.   This leads to an alternative state-

ment of Proposition 3.
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Proposition 3 . A subalgebra S of M is Hadamard closed if and only

if S is the reduced incidence algebra gD(F) of some multiplicative equiva-

lence on a transitive relation  D = Supp S.

The original D-R-S theorem concerns a given partial order  P on  N and

subalgebras of its incidence algebra that contain the indicator or zeta matrix,

Z, of P (z.. = 1  if ii £ P and z.. = 0 if not).
27 11

Corollary 5 (Doubilet-Rota-Stanley).   A subalgebra S of I(P)  containing

the zeta matrix Z for P  is the reduced incidence algebra g    (F) for some

multiplicative equivalence F on  P  if and only if S  is Hadamard closed.

(D-R-S assume in addition that S contains the identity matrix  /,  but this

is unnecessary.   Any Hadamard closed subalgebra containing  Z  must also

contain  / as can be seen by considering differences of scalar multiples of

various Hadamard powers of Z.)

It is clear that if  F  is a multiplicative equivalence on the partial order

P then the Hadamard closed space gp(P) contains  Z.   If, on the other hand,

5  is a subalgebra of l(P)  containing  Z and is also Hadamard closed then

Proposition 3   shows  S = gD(F) for a multiplicative equivalence  F on some

transitive relation D = Supp S.   But since Z £ S, P < D;  and since S is con-

tained in I(P),  D <P.

For the many applications based on Mo'bius functions an incidence alge-

bra  S must have its support  D not merely transitive but a partial order on  N

so that its zeta function is invertible.   To guarantee that  D  is some partial

order it would suffice to assume  S contains the identity and, as above, that

S is contained in the incidence algebra of some (other) partial order, or again,

just that D O D   -I,  where  D    is the transpose.   An alternative approach is

simply to put reasonable hypotheses on the zeta function itself.

Proposition 6.   Let S be a Hadamard closed subalgebra of M    containing

the zeta matrix Z  of its support D = Supp S.    Then S is the reduced inci-

dence algebra of a partial order P ( = D) on all of N  if and only if the rank

of Z  is n.

Since  det Z 4 0  there is a permutation relation   Q sending  i —► /'.  such

that Z..2,.   ...*   .   4 0.   Then Qk < Dk for each k; but then   Qn = / < D",
l»,   2,2 n,n - « -

whereas, since  D is transitive,   Dn<D,  which therefore is  reflexive.

(These are all relation inequalities.)   Now if the equivalence  D O D    were

not the identity then two or more rows of  Z would be the same, so its  rank

could not be n.   The converse is immediate.
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