ZERO-ONE LAWS FOR STABLE MEASURES

R. M. DUDLEY 1 AND MAREK KANTER

ABSTRACT. For any stable measure μ on a vector space, every measurable linear subspace has measure 0 or 1.

1. Introduction. It is known that for any Gaussian probability measure, a linear subspace has measure 0 or 1. This result has been extended to additive subgroups by Kallianpur [2]. Here we extend the zero-one law in a different direction, replacing "Gaussian" by "stable". We begin with some definitions.

Definition. Let S be a vector space over R and let S be a σ -algebra of subsets of S. We call (S, S) a measurable vector space iff both the following hold:

- (a) addition is jointly measurable from $S \times S$ into S,
- (b) scalar multiplication is jointly measurable from $R \times S$ into S, for completed Lebesgue measure λ on R.
- Let S be a topological vector space and let $\mathcal T$ be the σ -algebra of Borel sets (generated by the open sets). Then if S is metrizable and separable, $(S,\mathcal T)$ is a measurable vector space, but it need not be so in general.
- If (S, δ) is a measurable vector space and μ and ν are finite, countably additive measures on δ , then we have the convolution $\mu * \nu$ defined as usual by

$$(\mu * \nu)(A) = (\mu \times \nu) \{\langle x, y \rangle \colon x + y \in A\}.$$

For any (S-valued) random-variable Z, let its probability distribution (law), defined on S, be denoted by $\mathfrak{L}(Z)$.

Given any vector space S and $c \in \mathbb{R}$, let $m_c(x) \equiv cx$ for all $x \in S$, and $\theta_c(x) = x + s$ for any $s \in S$.

Definition. Given a measurable vector space (S, δ) , a probability

Received by the editors October 9, 1973.

AMS (MOS) subject classifications (1970). Primary 60B15; Secondary 60E05, 60F20, 28A40.

Key words and phrases. Stable measure, strictly stable, zero-one law, measurable vector space.

¹ This research was partially supported by National Science Foundation Grant GP-29072.

measure μ on δ will be called *stable* iff for any A>0 and B>0, and independent random variables X and Y with distribution μ , there is a C>0 and an $s\in S$ such that

(1)
$$\mathcal{Q}(C(AX + BY) + s) = \mu, \quad i.e.$$

$$[(\mu \circ m_A^{-1}) * (\mu \circ m_B^{-1})] \circ m_C^{-1} = \mu \circ \theta_{-s}^{-1}.$$

Definition. We say μ is *strictly* stable if we can always take s=0 in (1). We call μ symmetric iff $\mu(-E)=\mu(E)$ for all $E\in \mathcal{S}$. We say μ is stable of index γ if we can always take $C=C_{\gamma}(A,B)\equiv (A^{\gamma}+.B^{\gamma})^{-1/\gamma}$.

A random variable will be called stable iff its distribution is stable, and likewise for symmetry, strict stability, and the index.

The zero-one law (Theorem 6 and corollary) and its proof depend only on the above definitions. The following material, however, will help to clarify the meaning of stability in infinite-dimensional spaces.

If $S = \mathbb{R}$, then, as is well known (cf. Loève [4, pp. 326-328]) every stable μ has some index $\gamma \in (0, 2]$, and the characteristic functions of stable laws of index γ are of the form $e^{\phi(u)}$ where

(2)
$$\phi(u) = i\alpha u - b|u|^{\gamma} \{1 + ic(\operatorname{sgn} u) \tan(\pi \gamma/2)\}, \quad \gamma \neq 1;$$
$$= i\alpha u - b|u| \{1 + ic(\operatorname{sgn} u) 2\pi^{-1} \log|u|\}, \quad \gamma = 1,$$

where $\alpha \in \mathbb{R}$, b > 0, $|c| \le 1$, $\gamma \in (0, 2]$.

Simple calculations show that a stable μ with characteristic function having logarithm (2) is strictly stable iff $\alpha=0$ for $\gamma\neq 1$, while for $\gamma=1$ we have instead c=0. Also, μ is symmetric iff $\alpha=c=0$. μ has a finite mean iff $\gamma>1$ (Feller [1, Vol. II., Theorem 1, p. 576]). Then the mean is 0 iff μ is strictly stable. Thus a strictly stable law may be called *centered* stable.

Theorem 1. Let (S, δ) be a measurable vector space and μ a symmetric stable measure on it. Then $\mu \circ \theta_{2s}^{-1} = \mu$ for every s appearing in (1).

Before proving this we note that in many cases it implies s=0, i.e. μ is strictly stable. For example if S is a complete separable metric linear space and S is the Borel sets, s must be S. To prove that every symmetric stable S is strictly stable it would suffice to show that S or S implies S or S but we do not know whether this is true in general.

If δ is a "degenerate" σ -algebra, e.g. if it is the smallest σ -algebra for which one linear form ϕ is measurable, and S is more than one-dimensional, there exist $s \neq 0$ and μ such that $\mu \circ \theta_{uS}^{-1} = u$ for all $u \in \mathbb{R}$.

Proof. Suppose (1) holds for some s. Then in the notation of the definition of stability, and letting $\mathfrak{L}(Z)$ denote the distribution of Z, we have

 $\mathcal{Q}(X-s) = \mathcal{Q}(C(AX+BY)) = \mathcal{Q}(-C(AX+BY)) = \mathcal{Q}(-X+s) = \mathcal{Q}(X+s),$ so the conclusion follows.

If μ is a stable law on a measurable vector space (S, δ) and ϕ is an δ -measurable linear form on S, then $\mu \circ \phi^{-1}$ is clearly stable on R. If μ has index γ , so does $\mu \circ \phi^{-1}$. If μ is strictly stable or symmetric, $\mu \circ \phi^{-1}$ has the same property.

It is known that on a complete metric linear space, any Borel measurable or even universally measurable linear form is continuous (theorems of Banach and Douady; cf. L. Schwartz [5, Lemme 2]). There exist such spaces, e.g. $L^p([0, 1], \lambda)$ for $0 \le p < 1$, without any nonzero continuous linear forms, hence without nonzero measurable linear forms. On the other hand if X_n are independent strictly stable real random variables of the same index γ and f_n are functions in L^p with $\int |f_n|^p d\lambda \to 0$ fast enough as $n \to \infty$, then $\sum X_n f_n$ almost surely converges to an L^p -valued random variable whose distribution is clearly strictly stable of index γ . Thus stable measures on infinite dimensional spaces cannot always be treated in terms of characteristic functions nor measurable linear forms.

2. Linear forms. Let S be a real vector space and T a vector space of linear forms on S. Let S(T) be the smallest σ -algebra for which all members of T are measurable.

Theorem 2. Let S be a vector space and F a vector space of linear forms on S. Then (S, S(F)) is a measurable vector space.

Let μ be a probability measure on $\delta(F)$. Then μ is strictly stable iff $\mu \circ t^{-1}$ is strictly stable for all $t \in F$.

Proof. To show that $(S, \delta(F))$ is a measurable vector space it is enough to show that for each $f \in F$, the maps $(s, t) \to f(s + t)$ and $(x, s) \to f(xs)$ are jointly measurable, which they clearly are.

As to the stability part, "only if" is clear, as above. To prove "if", suppose each $\mu \circ t^{-1}$ is strictly stable on R. Let $\gamma(t)$ denote the index of t, i.e. $\mu \circ t^{-1}$. This is uniquely determined unless $\mu \circ t^{-1}$ is an atom at 0, and then t is stable of every index; we define $\gamma(t) = 2$ in this case.

For any $d \in (0, 2]$ let $F_d = \{t \in F : \gamma(t) \ge d\}$. Clearly $\gamma(t) = \gamma(ut)$ for any real $u \ne 0$. Hence if $t \in F_d$ then $ut \in F_d$ for all real u.

Suppose $t \in F_d$ and $\tau \in F_d$. Let X_1, X_2, \cdots be independent with distribution μ , and $S_n = X_1 + \cdots + X_n$. Then $\mathfrak{L}(t(S_n)/n^{1/\gamma(t)}) = \mathfrak{L}(t(X_1))$, and likewise for τ .

For any $\delta < d$, we have $(t+\tau)(S_n)/n^{1/\delta} \to 0$ in probability as $n \to \infty$. Thus either $\gamma(t+\tau) \ge d$ or $t+\tau=0$ a.s. (μ) , in which case we have set $\gamma(t+\tau)=2\ge d$. Hence F_d is a linear subspace of F.

For any two-dimensional subspace A of F, $\gamma_A = \{\gamma(t): t \neq 0, t \in A\}$ contains at most two points, since otherwise for some t, $\tau \in A$, $\gamma(t + \tau) < \gamma(t) < \gamma(\tau)$, contradicting the above for $d = \gamma(t)$.

Further, if γ_A contains two points $\delta < \kappa$, we can only have $\gamma = \kappa$ on a 1-dimensional subspace $B = F_{\kappa} \cap A$ of A. Let $t \in B$, $t \neq 0$, and $t(n) \in A \sim B$, $t(n) \to t$ in the usual topology of a plane. Then for any $u \in \mathbb{R}$,

$$\lim_{n\to\infty} |Ee^{iut(n)}|^2 = |Ee^{iut}|^2.$$

From (2) above we get

$$|Ee^{iut(n)}|^2 = \exp(-c(n)|u|^{\delta})$$

for some c(n) > 0, so we must have $c(n) \to 0$ and t = 0 a.s. (μ) .

Since any two points of F belong to some two-dimensional space, it follows that for some $\gamma \in (0, 2]$, all $t \in F$ are strictly stable of index γ ; this includes the possibility t = 0 a.s.

Now we show μ is strictly stable of index γ .

Let $C = C_{\gamma}(A, B)$ and $\nu = \mathfrak{L}(C(AX + BY))$ in (1). Since every t is strictly stable of index γ , we have $\nu \circ t^{-1} = \mu \circ t^{-1}$, and hence $\int e^{it} d\nu = \int e^{it} d\mu$.

By the uniqueness theorem for characteristic functions on finite-dimensional vector spaces, the joint distribution of any finite set $(t_1, \dots, t_n) \subseteq F$ is the same for ν as for μ . Now since ν and μ are defined on $\delta(F)$, they are equal, i.e. (1) holds. Q.E.D.

Theorem 3. Let S be a vector space and F a vector space of linear forms on S, and μ a probability measure on $\delta(F)$. Then μ is symmetric iff $\mu \circ t^{-1}$ is symmetric for all $t \in F$; also μ is symmetric and stable iff $\mu \circ t^{-1}$ is symmetric and stable for all $t \in F$.

Proof. This is an easy application of the previous theorem and method of proof. \Box

Definition. Given a real vector space S and a vector space F of linear forms on S, we say (S, F) is a full pair iff every real linear form ϕ on F can be written $\phi(f) \equiv f(s)$ for some $s = s_{\phi} \in S$.

An example of a full pair is (\mathbf{R}^T, F) where \mathbf{R}^T is the set of all real-valued functions on a set T and F is the set of finite linear combinations of coordinate evaluations.

Theorem 4. Suppose (S, F) is a full pair and μ is a probability measure on $(S, \mathfrak{F}(F))$ such that $\mu \circ f^{-1}$ is stable for all $f \in F$. Then μ is stable of some index $\gamma \in (0, 2]$, and if $\gamma \neq 1$ there is a unique $t \in S$ such that $\mu \circ \theta_t^{-1}$ is strictly stable.

Proof. Let $\mu^-(E) \equiv \mu(-E)$ and let $\nu = \mu * \mu^-$. Then for every $f \in F$, $\nu \circ f^{-1}$ is symmetrically stable. Thus by Theorems 2 and 3, ν is symmetric and strictly stable of some index $\gamma \in (0, 2]$. It follows that for each $f \in F$, $\mu \circ f^{-1}$ is stable of index γ .

For each $f \in F$ there is some real number k(f) such that if X and Y are independent with distribution μ , then for $C = C_{\gamma}(A, B)$,

$$\mathfrak{L}(f(C[AX+BY])+k(f))=\mathfrak{L}(f(X)).$$

Since a Borel probability measure on R cannot equal a translate of itself, $k(\cdot)$ must be a linear form on F. By fullness there is some $s = s(A, B) \in S$ such that k(f) = f(s) for all $f \in F$. As in the previous proof, it follows using characteristic functions that (1) holds, so μ is stable.

Now suppose $y \neq 1$. For any $f \in F$, there is some unique number α such that $f(X) + \alpha$ is strictly stable, by the characterization of strictly stable laws in (2). If we let $t = 2^{1/\gamma} s(1, 1)/(2 - 2^{1/\gamma})$, then we must have $\alpha = f(t)$ by (1) with A = B = 1. Hence f(X + t) is strictly stable. Thus by Theorem 2, $\mu \circ \theta_{-t}^{-1}$ is strictly stable. Q.E.D.

If (S, F) is not a full pair, then at any rate there is a topology $\mathcal{F}(S)$ on F such that (F, \mathcal{F}) is a topological vector space and a linear form ϕ on F is \mathcal{F} -continuous iff $\phi(f) \equiv f(s)$ for some $s \in S$. The weakest such topology is the weakest topology making each $f \to f(s)$ continuous; there may be others, as with infinite-dimensional Banach spaces and their duals.

Now let f_n be a sequence such that $f_n \to 0$ for \mathcal{F} . Then $f_n \to 0$ pointwise on S, so in (3) we must have $k(f_n) \to 0$. Hence k is sequentially \mathcal{F} -continuous.

Definition. We call (S, F) a semifull pair iff every sequentially $\mathcal{I}(S)$ -continuous linear form on F is of the form $f \to f(s)$ for some $s \in S$.

For examples of semifull pairs, let (F, U) be any metrizable linear space and S the dual space of all continuous linear forms on F.

Theorem 5. = Theorem 4 with "full" replaced by "semifull".

3. The zero-one law for linear subspaces.

Lemma 1. Let μ be a strictly stable measure on (S, δ) . Let E be a μ completion measurable linear subspace of S. Let $E' = \{x | x \in S, E - x/r \text{ is } \}$

 μ completion measurable for all rational numbers r > 0}. Then E' is completion measurable and $\mu(E') = 1$.

Proof. For every rational r>0, there is a positive real number t(r) such that $\mu\circ\mu\circ m_r^{-1}=\mu\circ m_{t(r)}^{-1}$ by (1). Now E/t(r)=E is μ measurable, hence E is $\mu\circ m_{t(r)}^{-1}$ measurable. So for every r, \exists sets F_r , G_r in δ with $F_r\subset E\subset G_r$ and $\mu\circ m_{t(r)}^{-1}(G_r\sim F_r)=0$. Let $F=\bigcup F_r$, $G=\bigcap G_r$, then we still have $\mu\circ m_{t(r)}^{-1}(G\sim F)=0$ for all r.

We can write

$$\mu \circ m_{t(r)}^{-1}(G \sim F) = \int_{S} \mu \circ m_{r}^{-1}((G - x) \sim (F - x))d\mu(x)$$

$$= \int_{S} \mu((G/r - x/r) \sim (F/r - x/r))d\mu(x).$$

Let $C_{r,x}=(G/r-x/r)\sim (F/r-x/r)$. It follows that for all r, $\mu\{x|$ $\mu(C_{r,x})=0\}=1$. Define $E''=\{x|\mu(C_{r,x})=0$ for all rational $r\}$ and conclude that E'' is in δ and $\mu(E'')=1$. However, since $F/r-x/r\subset E/r-x/r\subset G/r-x/r$, we conclude that $E''\subset E'$ and that E' is μ completion measurable with $\mu(E')=1$. Q.E.D.

Definition. If μ is strictly stable, we shall say that μ is well behaved if for all $\alpha \in (0, 1)$ there is a $\beta \in (0, 1)$ with

(4)
$$(\mu \circ m_{\alpha}^{-1}) * (\mu \circ m_{\beta}^{-1}) = \mu_{\bullet}$$

It is easy to show that if μ is strictly stable of index γ then it is well behaved.

Theorem 6. Let μ be strictly stable and well behaved. Let E be a linear subspace of S, measurable for the completion of μ . Then $\mu(E)=0$ or 1.

Proof. Suppose $\mu(E)>0$. Take α and β so that (4) is satisfied with α rational. Let E' be defined as in the last lemma. Suppose $x\in E'\sim E$ with $\mu(E-x)>0$. Then

$$\mu(E - \alpha x) = [(\mu \circ m_{\alpha}^{-1}) * (\mu \circ m_{\beta}^{-1})](E - \alpha x)$$

$$\geq (\mu \circ m_{\alpha}^{-1})(E - \alpha x)(\mu \circ m_{\beta}^{-1})(E) = \mu(E - x)\mu(E) > 0.$$

So the cosets $E-\alpha x$ are all disjoint with measure bounded away from zero, as α ranges over the rationals. This is a contradiction so we conclude that $\mu(E-x)=0$ for $x\in E'\sim E$.

Now take A>0 and take C=C(A,A) so that (1) holds with A=B. Letting $\delta=AC$, we have that (4) holds with $\alpha=\beta=\delta$. We compute

$$\mu(E)=(\mu\circ m_\delta^{-1})*(\mu\circ m_\delta^{-1})(E).$$

By arguing as in the preceding lemma we can conclude that E - x is $\mu \circ m_{\delta}^{-1}$ completion measurable for $\mu \circ m_{\delta}^{-1}$ almost all x and we can write

$$\mu(E) = \int_{S} \mu((E - \delta x)/\delta) d\mu(x)$$

$$= \int_{E'} \mu(E - x) d\mu(x) = \int_{E} \mu(E - x) d\mu(x) = \mu(E)^{2}.$$

Thus, $\mu(E) = 0$ or 1. Q.E.D.

Corollary. If E is a linear subspace of S with $E \in S$, then for any stable measure μ we have $\mu(E) = 0$ or 1.

Proof. Define the measure $\overline{\mu}$ by setting $\overline{\mu}(G) = \mu(-G)$ for $G \in \delta$. Define ν , the symmetrization of μ , by $\nu = \mu * \overline{\mu}$. It is clear that ν is strictly stable since for all A, B > 0, $\overline{\mu}$ satisfies (1) with -s substituted for s. Now $\nu(E) \ge \mu(E)^2$. If $\mu(E) > 0 < \nu(E+x)$, $x \notin E$, let $T = \{\alpha: \nu(E+\alpha x) \ge \nu(E)\nu(E+x) > 0\}$. Then for any A, B, C in (1), CA and CB are in T as in Theorem 6. Thus the set of ratios of elements of T is infinite and so is T. So we conclude that $\nu(E) = 1$ as in the end of Theorem 6. But

$$\nu(E) = \int \mu(E+x) d\mu(x).$$

It follows that $\mu(E+x)=1$ for μ almost all x in S. In particular $\mu(E+x)=1$ for at least one x in E since $\mu(E)>0$. Now E=E+x for x in E, so $\mu(E)=1$. Q.E.D.

We can extend Theorem 6 to sets E in δ which are only assumed to be rational linear subspaces of S (i.e., if x, $y \in E$ then $rx + sy \in E$ for any rational r, s).

Theorem 7. Suppose μ is stable of index γ , where γ is rational. If E is an δ measurable rational linear subspace of S, then $\mu(E)=0$ or $\mu(E)=1$.

Proof. By arguing as in the corollary to Theorem 6, we are reduced to considering the case when μ is symmetric and strictly stable. We assume $\gamma = p/q$ where p and q are integers. By Waring's theorem [3, p. 37] there exists a positive integer k such that any positive integer k can be written in the form $b = a_1^p + \cdots + a_k^p$, where a_1, \cdots, a_k are nonnegative integers. Now consider the equation

(5)
$$a^{p} = (a-1)^{p} + a_{1}^{p} + \cdots + a_{k}^{p}.$$

For any positive integer a, (5) has a positive solution in integers a_i . We define $r_0 = (a-1)/a)^q$, $r_1 = (a_1/a)^q$, \cdots , $r_k = (a_k/a)^q$ and we let $F(a) = \sum_0^k r_i$. We conclude that $F(a) \to 1$ as a goes to infinity and hence the equation

$$1 = r_0^{\gamma} + r_1^{\gamma} + \cdots + r_k^{\gamma}$$

has infinitely many rational solutions and $\sum_{i=0}^{k} r_{i}$ can assume infinitely many values (unless y = 1; then proceed as in Theorem 6).

Now $\mu = \mu \circ m_{r_0}^{-1} * \cdots * \mu \circ m_{r_k}^{-1}$ for any solution of (6) and we compute

$$\mu(E + (r_0 + \cdots + r_k)x) \ge (\mu \circ m_{r_0}^{-1}(E + r_0x)) \cdots (\mu \circ m_{r_k}^{-1}(E + r_kx))$$

$$= (\mu(E + x))^{k+1}.$$

If x is not in E and $\mu(E+x) > 0$, this leads to a contradiction, so we conclude $\mu(E+x) = 0$ for all $x \notin E$. The same reasoning shows that $\mu \circ m_{\alpha}^{-1}(E+x) = 0$ for all $x \notin E$ and α rational.

Let now $\alpha > 0$, $\beta > 0$, $\theta > 0$ be real with $\alpha^{\gamma} + \beta^{\gamma} = \theta^{\gamma}$ and α rational. We claim that

(7)
$$\mu \circ m_{\alpha}^{-1}(E)\mu \circ m_{\beta}^{-1}(E) = \mu \circ m_{\beta}^{-1}(E).$$

This will follow if we show that the $(\mu \circ m_{\alpha}^{-1}) \times (\mu \circ m_{\beta}^{-1})$ product measure of the set $\{(x, y) | x \notin E, y \notin E, x + y \in E\}$ is 0. However, this product measure equals $\int_{E} c \mu \circ m_{\alpha}^{-1}(E - y) d\mu \circ m_{\beta}^{-1}(y)$, which clearly is zero by the foregoing.

Now let r_1, \dots, r_k be any rational solution of (6) and define θ_j by $r_1^{\gamma} + \dots + r_j^{\gamma} = \theta_j^{\gamma}$ for all $1 \le j \le k$. We have

$$\mu \circ m_{\theta_2}^{-1}(E) = \mu \circ m_{r_1}^{-1}(E) \mu \circ m_{r_2}^{-1}(E).$$

Proceeding inductively by using (7), we conclude $\mu(E) = \prod_{1 \le j \le k} \mu \circ m_{r_j}^{-1}(E)$. However, $\mu(E) = \mu \circ m_{r_j}^{-1}(E)$ for all j so we conclude $\mu(E) = 0$ or 1. Q.E.D.

Acknowledgement. In the proof of Theorem 2 we had a useful discussion with D. Cohn and S. Portnoy.

REFERENCES

- 1. W. Feller, An introduction to probability theory and its applications. Vol.II, 2nd ed., Wiley, New York, 1971. MR 42 #5292.
- 2. G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199-211. MR 42 #1200.
- 3. A. Hinčin, Three pearls of number theory, Graylock Press, New York, 1952. MR 13, 724.
- 4. M. Loève, *Probability theory*. 3rd ed., Van Nostrand, Princeton, N.J., 1963. MR 34 #3596.
- 5. L. Schwartz, Sur le théorème du graphe fermé, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A602-A605. MR 34 #6494.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF MATHEMATICS, SIR GEORGE WILLIAMS UNIVERSITY, MONTREAL, QUEBEC, CANADA