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ZERO-ONE LAWS FOR STABLE MEASURES

R. M. DUDLEY1 AND MAREK KANTER

ABSTRACT.   For any stable measure p on a vector space, every

measurable linear subspace has measure  0 or  1.

1.   Introduction.    It is known that for any Gaussian probability measure,

a linear subspace has measure  0 or  1.   This result has been extended to

additive subgroups by Kallianpur [2].   Here we extend the zero-one law in a

different direction, replacing "Gaussian" by "stable".   We begin with some

definitions.

Definition.    Let S be a vector space over R  and let  S be a  (7-algebra

of subsets of S.   We call (S, S) a measurable vector space iff both the follow-

ing hold:

(a) addition is jointly measurable from S x S into S,

(b) scalar multiplication is jointly measurable from R x S into S,  fot

completed Lebesgue measure  À on R.

Let S  be a topological vector space and let J   be the ff-algebra of

Borel sets (generated by the open sets).   Then if S  is metrizable and sep-

arable,  (S, J ) is a measurable vector space, but it need not be so in general.

If (S, S) is a measurable vector space and p and v are finite, counta-

bly additive measures on S,   then we have the convolution  p * v defined as

usual by

(u*v)(A)= (px v)\{x, y): x + y e A\.

For any (5-valued) random-variable Z,  let its probability distribution

(law), defined on o,   be denoted by 5l(Z).

Given any vector space S  and  c £ R,  let 772  (x) = ex  fot all x £ S,  and

0s(x) = x + s  for any s £ S.

Definition.    Given a measurable vector space  (5, o),  a probability
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measure p on o will be called stable iff for any A > 0 and B > 0, and inde-

pendent random variables X and Y with distribution p, there is a C > 0 and

an s e S  such that

£{C{AX + BY) + s) = [i,    i.e.

[((i° w"1) *(p°»2~1)]or?2-1 = p°6»-].

Definition.   We say   p is strictly stable if we can always take  s = 0 in

(1).   We call p symmetric iff ui-E) = p(E)  for all  E £ S.   We say p is stable

of zWex y if we can always take   C = C   (A, B) = (/47+.S^)~   /r.

A random variable will be called stable iff its distribution is stable, and

likewise for symmetry, strict stability, and the index.

The zero-one law (Theorem 6 and corollary) and its proof depend only on

the above definitions.   The following material, however, will help to clarify

the meaning of stability in infinite-dimensional spaces.

If S = R,   then, as is well known (cf. Loève [4, pp. 326—328]) every sta-

ble p has some index y e (0, 2],   and the characteristic functions of stable

laws of index y are of the form e<p^u' where

cb{u) = iau - ¿>|zv|ril + z'c(sgn u)tacx{ny/2)\,      y A 1;

= iau - ¿>|z¿|il + z'c(sgn u)2n~  \og\u\\,       y = 1,

where a e R, b > 0, \c\ < 1, y £ (0, 2].

Simple calculations show that a stable p with characteristic function

having logarithm (2) is strictly stable iff a= 0  for y 4 1,  while for y = 1   we

have instead   c = 0.   Also,  p is symmetric iff a. = c = 0.   p has a finite mean

iff y > 1 (Feller [l, Vol. IL, Theorem 1, p. 576]).    Then the mean is  0 iff p

is strictly stable.   Thus a strictly stable law may be called centered stable.

Theorem 1. Let (S, u) be a measurable vector space and p a symmetric

stable measure on it.    Then p ° d2    = p for every s  appearing in (1).

Before proving this we  note that in many cases it implies  s = 0,  i.e.

p is strictly stable.   For example if S  is a complete separable metric linear

space and o  is the Borel sets,  s  must be  0.   To prove that every symmetric

stable  p is strictly stable it would suffice to show that p ° 0~   = p implies

p ° d~  = p,  but we do not know whether this is true in general.

If ö is a "degenerate" (7-algebra, e.g. if it is the smallest er-algebra for

which one linear form <b is measurable, and S is more than one-dimensional,

there exist s ^ 0  and p  such that p ° d~   = u foe all  u £ R.

Proof.   Suppose (1) holds for some s.   Then in the notation of the defi-

nition of stability, and letting i-(Z) denote the distribution of Z,   we have
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f (X -s)= l(C(AX + BY)) = £(- C(AX + BY)) = £(- X + s) = £(X + s),

so the conclusion follows.

If p. is a stable law on a measurable vector space  (5, 0) and cp is an

S-measurable linear form on  S,  then  p ° cp~   is clearly stable on  R. If p has

index  y,  so does  p ° (/3~   .   If p is strictly stable or symmetric,  p ° cf>~     has

the same property.

It is known that on a complete metric linear space, any Borel measurable

or even universally measurable linear form is continuous (theorems of Banach

and Douady; cf. L. Schwartz [5, Lemme 2]).   There exist such spaces, e.g.

Lp([0, lj, À)  for 0 — p < 1,  without any nonzero continuous linear forms,

hence without nonzero measurable linear forms.   On the other hand if X     are
72

independent strictly stable real random variables of the same index y and /

are functions in Lp  with J\f f d\ -» 0 fast enough as 72 -» °o,   then SX /    al-

most surely converges to an  L^-valued random variable whose distribution is

clearly strictly stable of index y.   Thus stable measures on infinite dimen-

sional spaces cannot always be treated in terms of characteristic functions

nor measurable linear forms.

2. Linear forms. Let S be a real vector space and T a vector space of

linear forms on S. Let a(T) be the smallest ff-algebra for which all members

of T ate measurable.

Theorem 2.   Let S  be a vector space and F a vector space of linear

forms on S.    Then (S, v(F)) is a measurable vector space.

Let p be a probability measure on §(F).    Then p is strictly stable iff

p ° t~     is strictly stable for all t £ F.

Proof.   To show that (S, S(F)) is a measurable vector space it is enough

to show that for each / £ F,   the maps (s, t) ■* f(s + t)  and (x, s) -» f(xs) ate

jointly measurable, which they clearly are.

As to the stability part,  "only if" is clear, as above.   To prove "if",

suppose each p ° t~l  is strictly stable on R.    Let y(t) denote the index of

/,  i.e. 12 ° t~   .   This is uniquely determined unless  p ° t~     is an atom at 0,

and then  t  is stable of every index; we define y(t) = 2 in this case.

For any    d £ (0, 2]  let Frf = \t £ F-y(t) > d\.   Clearly y(t) = yiut)  fot
1 /   r\        Ti ■ r r- , „

any real ufo.   Hence if t £ v , then  ut £ F, fot all real  Z2.

Suppose  t £ F , and  7 £ F ,.   Let X j, X2, • • •   be independent with distri-

bution p,  and Sn = Xx + • • - + Xn.   Then £(t(Sn)/n1/7 {t)) = £(t(X J),  and

likewise for r.
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For any 8 < d,  we have (/ + r)(S  )/n        -» 0 in probability as  n -> oo.

Thus either yit + r) > d or / + r = 0 a.s. (p),   in which case we have set

y(l + r) = 2 > d.    Hence  F , is a linear subspace of F.

For any two-dimensional subspace A  of F,   yA = \yit)'- t £ 0,   t £ A\

contains at most two points, since otherwise for some  t,  t £ A,  yit + t) <

yit) < yir),  contradicting the above for d = yit).

Further, if yA contains two points 8 < n, we can only have y = k on a

1-dimensional subspace B = F d A of A. Let I £ B, t 4 0, and t(n) £ A ~

B,  t{n) -> /  in the usual topology of a plane.   Then for any u £ R,

lim   \E>tM\2=\Eeiut\\

From (2) above we get

\EeiutM\2 =expi-c(n)\u\S)

foe some ein) > 0,   so we must have  c(n) -» 0 and / = 0  a.s. (p).

Since any two points of F belong to some two-dimensional space, it

follows that for some y £ (0, 2], all t £ F ace strictly stable of index y;

this includes the possibility  / = 0 a.s.

Now we show p is strictly stable of index y.

Let C = C   (A, B) and  v = £(C(AX + BY))  in (1).   Since every  t is

strictly stable of index y,  we have  v ° t~    = p o t~   ,  acid hence  felt dv =

felt du.

By the uniqueness theorem for characteristic functions on finite-dimen-

sional vector spaces, the joint distribution of any finite set it ,,■■•, t  )CF

is the same for  v as for p.   Now since  v and  p are defined on 5(F),   they

are equal, i.e. (1) holds.  Q.E.D.

Theorem 3.   Let S  be a vector space and F a vector space of linear

forms on   S,   and p a probability measure on ô(F).   Then p z's symmetric iff

p ° t~     is symmetric for all t £ F ;  also p z's symmetric and stable iff p ° t~

is symmetric and stable for all t £ F.

Proof.    This is an easy application of the previous theorem and method

of proof. O

Definition.   Given a real vector space S  and a vector space  F  of linear

forms on S,  we say (S, F) is a full pair iff every real linear form <fe on  F

can be written </>(/) = fis)  for some s = s ± £ S.

An example of a full pair is (R , F) where R is the set of all real-valued

functions on a set T and F is the set of finite linear combinations of coordinate

evaluations.
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Theorem 4.    Suppose  (S, F) is a full pair and p is a probability measure

on (S, S(F)) such that p ° /"' '   is stable for all f £ F.    Then  p is stable of

some index y £ (0, 2],   and if y 4 I  there is a unique  t £ S such that p ° ß~

is strictly stable.

Proof.    Let p~(E) = p(-E)  and let v= p * p~.    Then for every f £ F,

v ° f~     is symmetrically stable.   Thus by Theorems 2 and 3,  v is symmetric

and strictly stable of some index y £ (0, 2].   It follows that for each f £ F,

p ° f~     is stable of index  y.

For each f £ F  there is some real number k(f) such that if  X and  Y  are

independent with distribution  p,   then for  C = C   (A, B),

(3) £(/(C[AX + BY])+ k(f)) = £(/(X)).

Since a Borel probability measure on  R cannot equal a translate of itself,

k(-) must be a linear form on  F.   By fullness there is some s = s(A,  S) £ S

such that &(/) = f(s) for all  / £ F.   As in the previous proof, it follows using

characteristic functions that (1) holds, so  p is stable.

Now suppose y / 1.   For any  f £ F,   there is some unique number a such

that /(X) + a is strictly stable, by the characterization of strictly stable laws

in (2).   If we let t = 2l/ys(l, l)/(2 - 2l/y),   then we must have a = f(t) by

(1) with A = B = 1.   Hence f(X + z) is strictly stable.   Thus by Theorem 2,

p ° 9~ l is strictly stable.    Q.E.D.

If (S, F) is not a full pair, then at any rate there is a topology J (S) on

F  such that  (F, J ) is a topological vector space and a linear form  0 on   F

is J-continuous iff </j(/) a f(s) for some s £ S.    The weakest such topology

is the weakest topology making each / -> f(s)  continuous; there may be others,

as with infinite-dimensional Banach spaces and their duals.

Now let f    be a sequence such that /   -» 0 for J .   Then /   -> 0 point-

wise on S,   so in (3) we must have  k(f ) -> 0.   Hence &  is sequentially J-

continuous.

Definition.    We call  (S,  F) a semifull pair iff every sequentially J (Si-

continuous linear form on F  is of the form / ■* f(s)  for some s £ S.

For examples of semifull pairs, let (F,  U) be any metrizable linear space

and S  the dual space of all continuous linear forms on F.

Theorem 5. = Theorem 4 with "full" replaced by "semifull".

3.   The zero-one law for linear subspaces.

Lemma 1.   Let p be a strictly stable measure on (S, &).   Let E  be a p

completion measurable linear subspace of S.    Let E   = \x\x £ S, E - x/r is
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p completion measurable for all rational numbers r > 0Î.    Then E    is comple-

tion measurable and piE  ) = 1.

Proof.   For every rational  r>0, there is a positive real   number tir)

such that p o p o m~    = p o m~ . by (1).   Now E/tir) = F  is  p measurable,

hence  E is  p o m"! .   measurable. So for every   r, 3  sets   F ,   Gf in ö with

Fr C F C Gr and p o m-1r)iGr - F ) = 0.   Let F = (J^,.  G = flC,, then we

still have p o m~ \. (G ~ F) = 0  for all   r.

We can write

uom-'tG^ F)=   ic u°m~\iG -*}~ (F - x))dpix)
r i(r) J i r

= Js p((G/r - x/r) ~ (F/r - x/r))dp(x).

Let   C       = (G/r - x/r) ^ (F/r - x/r).   It follows that for all   r, pi%|

p(C     ) = 0j = 1.   Define  F    = ix|p(C     ) = 0  for all rational   rj and conclude

that  F    is in  S and piE") = 1.   However, since  F/r- x/r C F/r- x/r C G/r

— x/r, we conclude that  F    C F     and that  F    is  p  completion measurable

with p(F') = 1.    Q.E.D.

Definition.   If p  is strictly stable, we shall say that p  is well behaved

if for all  a e (0, 1)  there is a ß £ (0, 1) with

(4) (p°^;1)*(^°^1)=p.

It is easy to show that if p is strictly stable of index   y then it is well

behaved.

Theorem 6.   Let p  be strictly stable and well behaved.   Let E  be a lin-

ear subspace of S,  measurable for the completion of p.    Then piE) = 0   or 1.

Proof. Suppose piE) > 0. Take a and ß so that (4) is satisfied with

a rational. Let F be defined as in the last lemma. Suppose x £ E ~ F

with piE - x) > 0.   Then

p(F - cuf)= L(po m~ )*ip°m~i)\iE -ax)

¿ipom-^iE- ax)(p.°mp1)(E) = p(F - x)p(E)> 0.

So the cosets  E - ax ace all disjoint with measure bounded away from

zero, as  a ranges over the rationals.   This is a contradiction so we conclude

that piE - x) = 0  for x € E' ~ F.

Now take  A > 0  and take C = CiA, A) so that (1) holds with  A = B.

Letting S =AC, we have that (4) holds with  a= ß = 8.   We compute

p(F)= (p°r?z¡1)*(poTO-1)(F).

By arguing as in the preceding lemma we can conclude that   E — x

is  p "»¡j    completion measurable for p ° m<~   almost all  x    and we can write



ZERO-ONE LAWS FOR STABLE MEASURES 251

p(E) = js p((E -Sx)/8)dp(x)

= fE,p(E - x)dp(x) = jE p(E - x)dp(x) = p(E)2.

Thus, p(E) = 0 or 1.    Q.E.D.

Corollary.   // E is a linear subspace of S with  E £ o,   then for any

stable measure p we have p(E) = 0  or  1.

Proof.   Define the measure p. by setting p(G) = p( — G) fot G £ o.   De-

fine v, the symmetrization of p, by v = p *p.   It is clear that v is strictly

stable since for all  A, B > 0,p satisfies (1) with —s  substituted for  s.   Now

u(E)>p(E)2.   If p(E)>0<u(E + x), xiE, let T = [a: v(E + ax) > v(E)v(E + x) >

0!. Then for any A, B, C in (1), CA and CB ate in T as in Theorem 6.   Thus the set

of ratios of elements of  T is infinite and so is  T.   So we conclude that

v(E) =1  as in the end of Theorem 6.   But

v(E) = J  p(E + x)dp(x).

It follows that p(E + x) = 1   for p almost all  x in  S.   In particular

p(E + x) = 1  for at least one x in  E since p(E) > 0.   Now F = F + x fot x

in F,  so fi(F) = 1.   Q.E.D.

We can extend Theorem 6 to sets E in  ö which are only assumed to be

rational linear subspaces of S (i.e., if  x, y £ E then  rx + sy £ E tot any ra-

tional  r, s).

Theorem 7.   Suppose p  is stable of index y,  where y is rational.   If E

is an o measurable rational linear subspace of S,   then p(E) = 0   or p(E) = 1.

Proof. By arguing as in the corollary to Theorem 6, we are reduced to

considering the case when p is symmetric and strictly stable. We assume

y = p/q where p and q ate integers. By Waring's theorem [3, p. 37] there

exists a positive integer k such that any positive integer b can be written

in the form b = ap + • • • + ap,, where flj, • • • , a, are nonnegative integers.

Now consider the equation

(5) ap = (a-l)p+ ap+--- + ap.

For any positive integer a, (5) has a positive solution in integers  a ..   We

define  rQ = (a -  l)/a)q,  rt = (fl fa)q, • •• ,r¿ = (ak/a)q and we let  F(a) =

S0 r¿.   We conclude that F(a) -» 1  as a goes to infinity and hence the equa-

tion

-v -v -V

(6) l«'o+'i + *" + rI
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has infinitely many rational solutions and  Z,0r ■ can assume infinitely many

values (unless  y = 1; then proceed as in Theorem 6).

Now p- p ° m~    *■ • • *p °?7z_     for any solution of (6) and we compute
r0 rk

p(E + (rQ + ■ •■ + rk )x) > (p o m~\E + rQx)) ■ • • (p ° m~l(E + zyx))
0 k

(p(E + x))k+1.

If x  is not in  E  and fiiE + x) > 0,  this leads to a contradiction, so we

conclude p(E + x) = 0   for all  x f E.   The same reasoning shows that p o

m^iE + x) = 0   for all  x f E  and  a rational.

Let now  a> 0, /3 > 0, d > 0 be real with  a7 + ßy = dy and a rational.

We claim that

p° y1(E)(i("»/(£)= pOM^fF).

This will follow if we show that the  (p ° m~    ) x (p ° mZ  ) product mea-

sure of the set  i(x, y)|x ft E, y f E, x + y £ E\ is  0.   However, this product

measure equals  f cp °m~   (E — y) d\L ° m~   (y),  which clearly is zero by the
E P

foregoing.

Now let r,, • •• , r,  be any rational solution of (6) and define d . by

A + . . . + A. = dy for all   1 < ? < k.   We have
1 ii '

p ° m~A(E)= p° m~\E) p° m~l{E).
2 Tl r2

Proceeding inductively by using (7), we conclude piE) = Ü.    .   , p ° »z~ (E).

However,  p(E) = p ° m~  (E) for all  /'  so we conclude piE) = 0  or 1.    Q.E.D.
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