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ZERO-ONE LAVWS FOR STABLE MEASURES

R. M. DUDLEY! AND MAREK KANTER

ABSTRACT. For any stable measure . on a vector space, every

.measurable linear subspace has measure 0 or 1.

1. Introduction. It is known that for any Gaussian probability measure,
a linear subspace has measure 0 or 1. This result has been extended to
additive subgroups by Kallianpur [2]. Here we extend the zero-one law in a
different direction, replacing ‘‘Gaussian’’ by ‘‘stable’’. We begin with some
definitions.

Definition. Let S be a vector space over R and let § be a o-algebra
of subsets of S. We call (S, 8) a measurable vector space iff both the follow-
ing hold:

(a) addition is jointly measurable from S x § into S,

(b) scalar multiplication is jointly measurable from R x § into S, for
completed Lebesgue measure A on R.

Let S be a topological vector space and let J be the o-algebra of
Borel sets (generated by the open sets). Then if S is metrizable and sep-
arable, (S, J) is a measurable vector space, but it need not be so in general.

If (S, S) is a measurable vector space and p and v are finite, counta-
bly additive measures on O, then we have the convolution p *v defined as
usual by

(*v)A)= (uxv)x, y): x +y € Al.

For any (S-valued) random-variable Z, let its probability distribution
(law), defined on S, be denoted by £(2).

Given any vector space § and c € R, let m_(x) = cx forall x €S, and
0. (x)=x+s forany s €S.

Definition. Given a measurable vector space (S, S), a probability
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measure [l on S will be called stable iff for any A >0 and B >0, and inde-
pendent random variables X and Y with distribution g, there isa C >0 and

an s € § such that

= LC@AX + BY)+s)=p, i.e.

(o mzly* (womghHlomz! = po o=l

Definition. We say p is strictly stable if we can always take s = 0 in
(1). We call p symmetric iff p(—E) = p(E) for all E € S. We say j is stable
of index y if we can always take C = C,y(A, B) = (A”+.B”)- /7,

A random variable will be called stable iff its distribution is stable, and
likewise for symmetry, strict stability, and the index.

The zero-one law (Theorem 6 and corollary) and its proof depend only on
the above definitions. The following material, however, will help to clarify
the meaning of stability in infinite-dimensional spaces.

If S =R, then, as is well known (cf. Loéve [4, pp. 326-328]) every sta-
ble p has some index y € (0, 2], and the characteristic functions of stable
laws of index y are of the form ¢®®) where
2 d@) = iou — blu| V{1 + ic(sgn u)tan(ny/2)}, y#1;

= iau - blu|{l + ic(sgn u)2n " 'loglul}, y =1,
where a € R, >0, |c] <1,y €(0, 2.

Simple calculations show that a stable p with characteristic function
having logarithm (2) is strictly stable iff a=0 for y # 1, while for y =1 we
have instead ¢ =0. Also, p is symmetric iff a=c = 0. p has a finite mean
iff y > 1 (Feller [1, Vol. II., Theorem 1, p. 576]). Then the mean is 0 iff p
is strictly stable. Thus a strictly stable law may be called centered stable.

Theorem 1. Let (S, ) be a measurable vector space and | a symmetric

stable measure on it. Then p © 9;;: p for every s appearing in (1).

Before proving this we note that in many cases it implies s = 0, i.e.

u is strictly stable. For example if S is a complete separable metric linear
space and S is the Borel sets, s must be 0. To prove that every symmetric
stable p is strictly stable it would suffice to show that p© 0;; = p implies
o 0; 1. i, but we do not know whether this is true in general.

If 8 is a “‘degenerate’’ o-algebra, e.g. if it is the smallest o-algebra for
which one linear form ¢ is measurable, and S is more than one-dimensional,
there exist s # 0 and p such that po° 0;;: u forall u e R.

Proof. Suppose (1) holds for some s. Then in the notation of the defi-
nition of stability, and letting £(Z) denote the distribution of Z, we have
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X - s)= £CAX + BY)) = &- C(AX + BY)) = &= X + 5) = &X + 5),

so the conclusion follows.

If p is a stable law on a measurable vector space (S, S) and ¢ is an
S-measurable linear form on S, then pog~ lis clearly stable on R. If u has
index y, so does po¢” Lot p is strictly stable or symmetric, po ¢~ ! has
the same property.

It is known that on a complete metric linear space, any Borel measurable
or even universally measurable linear form is continuous (theorems of Banach
and Douady; cf. L. Schwartz [5, Lemme 2]). There exist such spaces, e.g.
L?([0, 1], A) for 0 < p < 1, without any nonzero continuous linear forms,
hence without nonzero measurable linear forms. On the other hand if X, are
independent strictly stable real random variables of the same index y and fn
are functions in L? with f|f |Pd\ - 0 fast enough as n - co, then 32X, f, al-
most surely converges to an LP-valued random variable whose distribution is
clearly strictly stable of index y. Thus stable measures on infinite dimen-
sional spaces cannot always be treated in terms of characteristic functions

nor measurable linear forms.

2. Linear forms. Let S be a real vector space and T a vector space of
linear forms on S. Let 8(T) be the smallest o-algebra for which all members

of T are measurable.

Theorem 2. Let S be a vector space and F a vector space of linear
forms on S. Then (S, S(F)) is a measurable vector space.

Let p be a probability measure on S(F). Then p is strictly stable iff
po t~1is strictly stable for all t € F.

Proof. To show that (S, &(F)) is a measurable vector space it is enough
to show that for each f € F, the maps (s, t) - f(s + t) and (x, s) » f(xs) are
jointly measurable, which they clearly are.

As to the stability part, ‘‘only if”’ is clear, as above. To prove ‘‘if’’,
suppose each p © =1 is strictly stable on R. Let y(t) denote the index of

t, i.e.pot” L

This is uniquely determined unless p © t~! is an atom at 0,
and then ¢ is stable of every index; we define y(t) = 2 in this case.

For any d € (0, 2] let F,={t e F1 () 2 d}. Clearly y(z) = y(ut) for
any real « # 0. Hence if t € F; then ut € F, for all real .

Suppose t € F; and 7 € F,. Let X, X,, --- be independent with distri-
bution g, and S_ =X, + .-+ X_. Then g(z(Sn)/nl/y(‘)) = £((x,)), and

likewise for 7.
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For any 0 < d, we have (¢ + 7)(8")/711/8 - 0 in probability as 7 - co.
Thus either y(t +7) 2d or t +7=0 a.s. (u), in which case we have set
y(t + 7) =22 d. Hence F, is a linear subspace of F.

For any two-dimensional subspace A of F, y, ={y(t):t £0, t € A}
contains at most two points, since otherwise for some f, 7 € 4, Wt + 7)<
y(t) < ¥(7), contradicting the above for d = y(¢).

Further, if y, contains two points 8 <k, we can only have y =« on a
1-dimensional subspace B = F"< NA of A. Let t€B,t£0, and t(n) e A~
B, t(n) > ¢ in the usual topology of a plane. Then for any u € R,

lim lEeiut(n)IZ _ lEeiutlz.
n—oo
From (2) above we get
|Eett?)|2 = exp(- c(n)|u|8)
for some c(n) > 0, so we must have c(n) >0 and ¢t =0 a.s. (y).

Since any two points of F belong to some two-dimensional space, it
follows that for some y € (0, 2], all ¢ € F are strictly stable of index y;
this includes the possibility ¢t = 0 a.s.

Now we show p is strictly stable of index y.

Let C = C,),(A, B) and v = £(C(AX + BY)) in (1). Since every ¢ is
strictly stable of index y, we have v ot~ ! = pot~!, and hence fei*dv =
feitdp.

By the uniqueness theorem for characteristic functions on finite-dimen-
sional vector spaces, the joint distribution of any finite set (¢},---, ¢ )CF
is the same for v as for u. Now since v and p are defined on S(F), they
are equal, i.e. (1) holds. Q.E.D.

Theorem 3. Let S be a vector space and F a vector space of linear
forms on S, and p a probability measure on S(F). Then [ is symmetric iff
por™!
is symmetric and stable for all t € F.

is symmetric for all t € F; also p is symmetric and stable iff p © 1!

Proof. This is an easy application of the previous theorem and me thod
of proof. O

Definition. Given a real vector space S and a vector space F of linear
forms on S, we say (S, F) is a full pair iff every real linear form ¢ on F
can be written ¢(f) = f(s) for some s = sg €S-

An example of a full pair is (RT, F) where RT is the set of all real-valued
functions on a set T and F is the set of finite linear combinations of coordinate

evaluations.
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Theorem 4. Suppose (S, F) is a full pair and p is a probability measure
on (S, S(F)) such that p 0/"1 is stable forall { € F. Then p is stable of
some index y € (0, 2], and if y # 1 there is a unique t € S such that p °© 9;1
is strictly stable.

Proof. Let p (E)= p(-E) and let v=p *p~. Then for every f € F,
vo /'1 is symmetrically stable. Thus by Theorems 2 and 3, v is symmetric
and strictly stable of some index y € (0, 2]. Tt follows that for each f € F,
pno f"l is stable of index y.

For each f € F there is some real number k(f) such that if X and Y are
independent with distribution g, then for C = C,y(A, B),

(3) L/ (clAX + BYD) + k(7)) = £ (X)).

Since a Borel probability measure on R cannot equal a translate of itself,
k() must be a linear form on F. By fullness there is some s = s(4, B) € §
such that k(f) = f(s) for all f € F. As in the previous proof, it follows using
characteristic functions that (1) holds, so p is stable.

Now suppose y# 1. Forany [ € F, there is some unique number a such
that f(X) + a is strictly stable, by the characterization of strictly stable laws
in (2). If we let t =2V 7s(1, 1)/(2 - 21/7), then we must have a = f(z) by
(1) with A =B = 1. Hence (X + t) is strictly stable. Thus by Theorem 2,
po G'tl is strictly stable. Q.E.D.

If (S, F) is not a full pair, then at any rate there is a topology J(S) on
F such that (F, J) is a topological vector space and a linear form & on F
is J-continuous iff ¢(f) = f(s) for some s € S. The weakest such topology
is the weakest topology making each [ - f(s) continuaus; there may be others,
as with infinite-dimensional Banach spaces and their duals.

Now let / be a sequence such that f - 0 for J. Then f, ~» 0 point-
wise on §, so in (3) we must have k(fn) - 0. Hence k is sequentially g-
continuous.

Definition. We call (S, F) a semifull pair iff every sequentially J(S)-
continuous linear form on F is of the form f - f(s) for some s € S.

For examples of semifull pairs, let (F, U) be any metrizable linear space

and S the dual space of all continuous linear forms on F.
Theorem 5. = Theorem 4 with ‘‘full’’ replaced by ‘‘semifull’’.
3. The zero-one law for linear subspaces.

Lemma 1. Let p be a strictly stable measure on (S, 8). Let E be a p

completion measurable linear subspace of S. Let E' ={x|x € S, E - x/r is
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i completion measurable for all rational numbers r> 0}, Then E' is comple-
tion measurable and p(E') = 1.

Proof. For every rational r> 0, there is a positive real number #r)
such that popom>' =y om> L by (1). Now E/(r) = E is p measurable,

t(r)
hence E is p ©my , measurable. So for every r, 3 sets F, G, in S with

FrC EC C7 and p om;(,l)(cr"' F)=0. Let F= UF,, G = nCr, then we
still have p omy (G~ F) =0 for all r.

We can write

pomily (G~ F)= fs pom (G - x) ~ (F = x))du(x)
= fS w((G/r = x/r) ~ (F/r - x/r))dp(x).

Let C = (G/r = x/r) ~(F/r = x/r). It follows that for all r, pix|
”'(Cr,x) =0}=1. Define E" = {x]p(Cr'x) =0 for all rational r} and conclude
that £” isin § and p(E") = 1. However, since F/r—x/rCE/r-x/rCG/r
- x/r, we conclude that E” CE' and that E' is p completion measurable
with u(E') = 1. Q.E.D.

Definition. If p is strictly stable, we shall say that p is well behaved
if for all @ €(0, 1) there is a B €(0, 1) with

(4) (womZ)yx(uomzl)=p.
It is easy to show that if u is strictly stable of index y then it is well
behaved.

Theorem 6. Let p be strictly stable and well behaved. Let E be a lin-
ear subspace of S, measurable for the completion of p. Then u(E) =0 or 1.

Proof. Suppose u(E) >0. Take a and B so that (4) is satisfied with
o rational. Let E' be defined as in the last lemma. Suppose x € E' ~ E
with p(E - x) > 0. Then
WE = ax) = [(uom!) * (uomzH(E - ax)

> omZ!)(E - ax)(uo mg')(E) = wE - x)uE) > 0.

So the cosets E ~ ax are all disjoint with measure bounded away from
zero, as Q@ ranges over the rationals. This is a contradiction so we conclude
that p(E - x) =0 for x € E' ~ E,

Now take 4 > 0 and take C = C(4, A) so that (1) holds with 4 = B.
Letting § =AC, we have that (4) holds with a= 8= 5. We compute

WE) = (o mz') * (o m3')(E).
By arguing as in the preceding lemma we can conclude that E - x

is po mgl completion measurable for p °mg almost all * and we can write
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wE) = [ 5 W(E - 8:)/5 )dutx)
=fE,,L(E - x)dp(x) = fE W(E - x)dpu(x) = p(E)?.

Thus, u(E) =0 or 1. Q.E.D.

Corollary. If E is alinear subspace of S with E €8, then for any
stable measure p we have u(E) =0 or 1.

Proof. Define the measure i by setting fi(G) = u(-G) for G €. De-
fine v, the symmetrization of pu, by v =p *pu. It is clear that v is strictly
stable since for all A, B > 0, g satisfies (1) with —s substituted for s. Now
v(E) > W(E)% 1 (B)>0<v(E+x), x €E, let T=1{a: v(E+ ax) >v(E)v(E + x) >
0}. Then for any A, B, C in (1), CA and CB are in T as in Theorem 6. Thus the set
of ratios of elements of T is infinite and so is T. So we conclude that
VY(E) = 1 as in the end of Theorem 6. But

wE) = [ E + x)dut).
It follows that pu(E + x) = 1 for p almost all x in S. In particular
p(E + x) = 1 for at least one x in E since u(E) >0. Now E = E + x for x
in E, so u(E) = 1. Q.E.D.
We can extend Theorem 6 to sets E in & which are only assumed to be
rational linear subspaces of § (i.e., if x, y € E then rx + sy € E for any ra-

tional 7, s).

Theorem 7. Suppose p is stable of index y, where y is rational. If E
is an & measurable rational linear subspace of S, then p(E) =0 or u(E) = 1.

Proof. By arguing as in the corollary to Theorem 6, we are reduced to
considering the case when p is symmetric and strictly stable. We assume
y = p/q where p and g are integers. By Waring’s theorem [3, p. 37] there
exists a positive integer k such that any positive integer b can be written
in the form b=af+ ... ¢ az, where a,, -+« ,a, are nonnegative integers.

1
Now consider the equation

(5) al=(@-1D?+al + .-+ ab.

For any positive integer a, (5) has a positive solution in integers a. We
define 7, = (a - 1)/a)é r,=(a /), . T = (ak/a)q and we let F(a) =
23 7, We conclude that F(a) »1 as a goes to infinity and hence the equa-
tion

v
©6) 1=r'g+r2'+---+rle
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has infinitely many rational solutions and 20 r, can assume infinitely many
values (unless y = 1; then proceed as in Theorem G6).
1

Now p=p© m‘r‘0 koo kpy Om:kl for any solution of (6) and we compute

wE + (r0 e, )x)> (no m:OI(E + rox)) cee(no m:kl(E + rkx))

= (WE + x)k+1,

If x is not in E and u(E + x) >0, this leads to a contradiction, so we
conclude u(E + x) =0 for all x £ E. The same reasoning shows that p o
m7ME +x) =0 forall x £E and a rational.

Let now a>0, 8>0, 60 >0 be real with a” + 87 =07 and a rational.
We claim that
- pomI By o mz (E) = pomy (E).

This will follow if we show that the (p© m;l ) x (uo mg 1) product mea-
sure of the set {(x, y)|x £E, y #E, x +y € E} is 0. However, this product
measure equals fEcu omy, YE - y) dp Om,B- (y), which clearly is zero by the
foregoing.

Now let r,, --+, 7, be any rational solution of (6) and define 0]. by
r'{+ ceet r;.)/= O?for all 1 <j<k. We have

po mgzl(ls) =po m:ll(E) po m:ZI(E).
Proceeding inductively by using (7), we conclude u(E) = IO _er® m1(E).
However, u(E) = u © m:l(E) for all j so we conclude p(E) =0 or 1. b.E.D.
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