Zero-one laws for stable measures
HTML articles powered by AMS MathViewer
- by R. M. Dudley and Marek Kanter
- Proc. Amer. Math. Soc. 45 (1974), 245-252
- DOI: https://doi.org/10.1090/S0002-9939-1974-0370675-9
- PDF | Request permission
Abstract:
For any stable measure $\mu$ on a vector space, every measurable linear subspace has measure 0 or 1.References
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199–211. MR 266293, DOI 10.1090/S0002-9947-1970-0266293-4
- A. Y. Khinchin, Three pearls of number theory, Graylock Press, Rochester, N.Y., 1952. MR 0046372
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- Laurent Schwartz, Sur le théorème du graphe fermé, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A602–A605 (French). MR 206676
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 245-252
- MSC: Primary 60B05; Secondary 60F20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0370675-9
- MathSciNet review: 0370675