Gleason parts and certain counterexamples in the big disc context
HTML articles powered by AMS MathViewer
- by J. P. Milaszewicz
- Proc. Amer. Math. Soc. 45 (1974), 217-222
- DOI: https://doi.org/10.1090/S0002-9939-1974-0380421-0
- PDF | Request permission
Abstract:
In the first part of this paper, Lemmas (1.1) and (1.4) provide a generalization of the fact that no Cauchy measures exist in the big disc. In the second part we show that this fact implies the existence of the H. Bohr and J. Favard counterexamples concerning harmonic and analytic almost periodic functions.References
- Richard Arens and I. M. Singer, Generalized analytic functions, Trans. Amer. Math. Soc. 81 (1956), 379–393. MR 78657, DOI 10.1090/S0002-9947-1956-0078657-5
- Richard Arens, A Banach algebra generalization of conformal mappings of the disc, Trans. Amer. Math. Soc. 81 (1956), 501–513. MR 78658, DOI 10.1090/S0002-9947-1956-0078658-7 A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, 1932.
- Errett Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc. 70 (1964), 121–122. MR 158284, DOI 10.1090/S0002-9904-1964-11045-4
- Harald Bohr, Zur Theorie der fastperiodischen Funktionen, Acta Math. 47 (1926), no. 3, 237–281 (German). III. Dirichletentwicklung analytischer Funktionen. MR 1555216, DOI 10.1007/BF02543846 J. Favard, Sur les fonctions harmoniques presque périodiques, Thèse, Paris, 1927, Gauthier-Villars, Editeurs.
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387 A. M. Gleason, Function algebras, Seminars on Analytic Functions, vol. II, Institute for Advanced Study, Princeton, N. J., 1957, pp. 213-226. K. Hoffman, Fatou’s theorem for generalized analytic functions, Seminars on Analytic Functions, vol. II, Institute for Advanced Study, Princeton, N. J., 1957, pp. 227-239.
- Kenneth Hoffman, Boundary behavior of generalized analytic functions, Trans. Amer. Math. Soc. 87 (1958), 447–466. MR 96942, DOI 10.1090/S0002-9947-1958-0096942-X
- Kenneth Hoffman and I. M. Singer, Maximal subalgebras of $C(\Gamma )$, Amer. J. Math. 79 (1957), 295–305. MR 85478, DOI 10.2307/2372683
- Kenneth Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317. MR 149330, DOI 10.1007/BF02545769
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 217-222
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0380421-0
- MathSciNet review: 0380421