On semiprime Jordan rings $H(R)$ with ACC
HTML articles powered by AMS MathViewer
- by Daniel J. Britten
- Proc. Amer. Math. Soc. 45 (1974), 175-178
- DOI: https://doi.org/10.1090/S0002-9939-1974-0399197-6
- PDF | Request permission
Abstract:
Let $R$ be a $2$-torsion free semiprime associative ring with involution*. Conditions are put on the Jordan ring $H(R)$ of symmetric elements which imply the existence of a ring of quotients which is a direct sum of involution simple Artinian rings. Using this result we obtain a Jordan ring of quotients for $H(R)$.References
- Daniel J. Britten, On prime Jordan rings $H(R)$ with chain condition, J. Algebra 27 (1973), 414–421. MR 325714, DOI 10.1016/0021-8693(73)90114-2
- T. S. Erickson and S. Montgomery, The prime radical in special Jordan rings, Trans. Amer. Math. Soc. 156 (1971), 155–164. MR 274543, DOI 10.1090/S0002-9947-1971-0274543-4
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099, DOI 10.1090/coll/039
- Charles Lanski, Rings with involution whose symmetric elements are regular, Proc. Amer. Math. Soc. 33 (1972), 264–270. MR 292889, DOI 10.1090/S0002-9939-1972-0292889-7
- Wallace S. Martindale III, Rings with involution and polynomial identities, J. Algebra 11 (1969), 186–194. MR 234990, DOI 10.1016/0021-8693(69)90053-2
- Chester Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171–1175. MR 230776, DOI 10.1090/S0002-9939-1968-0230776-X
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 175-178
- MSC: Primary 17C10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0399197-6
- MathSciNet review: 0399197