Multipliers vanishing at infinity for certain compact groups
HTML articles powered by AMS MathViewer
- by Alessandro Figà-Talamanca
- Proc. Amer. Math. Soc. 45 (1974), 199-203
- DOI: https://doi.org/10.1090/S0002-9939-1974-0461035-0
- PDF | Request permission
Abstract:
We prove for certain compact groups $G$ and $1 < p < \infty ,p \ne 2$, that there exist operators commuting with left translations on ${L^p}(G)$ which are compact as operators on ${L^2}(G)$ but not as operators on ${L^p}(G)$.References
- Aline Bonami, Étude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 2, 335–402 (1971) (French, with English summary). MR 283496, DOI 10.5802/aif.357
- Charles Fefferman and Harold S. Shapiro, A planar face on the unit sphere of the multiplier space $M_{p}$, $1<p<\infty$, Proc. Amer. Math. Soc. 36 (1972), 435–439. MR 308669, DOI 10.1090/S0002-9939-1972-0308669-X
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Alessandro Figà-Talamanca and Garth I. Gaudry, Multipliers of $L^{p}$ which vanish at infinity, J. Functional Analysis 7 (1971), 475–486. MR 0276689, DOI 10.1016/0022-1236(71)90029-2
- Alessandro Figà-Talamanca and Daniel Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific J. Math. 16 (1966), 505–514. MR 206626, DOI 10.2140/pjm.1966.16.505
- Carl Herz, The theory of $p$-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82. MR 272952, DOI 10.1090/S0002-9947-1971-0272952-0
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 199-203
- MSC: Primary 43A22; Secondary 22C05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0461035-0
- MathSciNet review: 0461035