THE COMPACT 3-MANIFOLDS COVERED BY $S^2 \times R^1$

JEFFREY L. TOLLEFSON

ABSTRACT. The classification of all free actions by a finite group on $S^2 \times S^1$ follows from the observation that there exist only four compact 3-manifolds which have $S^2 \times R^1$ for a universal covering space.

Theorem. If $S^2 \times R^1$ is a covering space of the compact 3-manifold M then M is homeomorphic to $S^2 \times S^1, N, P^2 \times S^1$, or $P^3 \# P^3$ (N denotes the nonorientable 2-sphere bundle over S^1 and P^n denotes real projective n-space).

Proof. We assume all spaces, subspaces and maps are PL. Let $p: S^2 \times R^1 \rightarrow M$ be a covering space projection onto the compact space M. Since $\pi_2(M) \neq 0$, M contains either a noncontractible 2-sphere or a two-sided projective plane $[1]$, say $F \subset M$. Let U denote a regular neighborhood of F in M. Each component of $S^2 \times R^1 - p^{-1}(\text{Int}(U))$ is homeomorphic to $S^2 \times [0, 1]$ and covers a component of $M - \text{Int}(U)$. Thus, each component of $M - \text{Int}(U)$ is either homeomorphic to $S^2 \times [0, 1]$ or is double-covered by $S^2 \times [0, 1]$. In the latter case, [2] and [3] can be applied (by capping the boundaries of $S^2 \times [0, 1]$ with 3-cells to obtain S^3) to see that $S^2 \times [0, 1]$ double-covers only $P^2 \times [0, 1]$ and $P^3 - \{\text{open 3-cell}\}$. It is now easily seen that M must be homeomorphic to $S^2 \times S^1, N, P^2 \times S^1$ or $P^3 \# P^3$.

Corollary 1. $S^2 \times S^1$ is a covering space of only $S^2 \times S^1, N, P^2 \times S^1$, and $P^3 \# P^3$.

Corollary 2. Suppose G is a finite group acting freely on $S^2 \times S^1$. Let M denote the orbit space of G. Then

(i) $G \cong Z_p$ and $M \cong S^2 \times S^1$ (for p odd), $M \cong S^2 \times S^1, N$, or $P^2 \times S^1$ (for p even); or

(ii) $G \cong Z_p \times Z_2$ (p even) and $M \cong P^2 \times S^1$; or

(iii) $G \cong D_n$, the dihedral group of order $2n$ ($n \geq 1$), and $M \cong P^3 \# P^3$.

Corollary 3. The 3-manifolds $P^2 \times S^1$ and $P^3 \# P^3$ may cover only them-
selves and N may cover only itself and $P^2 \times S^1$.

REFERENCES

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843

Current address: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268