THE HARDY CLASS OF A FUNCTION
WITH SLOWLY-GROWING AREA

LOWELL J. HANSEN

ABSTRACT. In this paper we show that if \(f \) is analytic on the open unit disk and if the area of \(\{|z| \leq R\} \cap \text{image of } f \) grows sufficiently slowly as a function of \(R \), then \(f \) belongs to the Hardy class \(H^p \) for all \(p \) satisfying \(0 < p < +\infty \).

Let \(\Delta \) denote the open unit disk \(\{|z| < 1\} \). It has been shown recently by H. Alexander, B. A. Taylor and J. L. Ullman [1, Theorem 1, p. 335] that

1. if \(f \) is analytic on \(\Delta \) and the area of \(f(\Delta) \) is finite, then \(f \) belongs to the Hardy class \(H^2 \); and

2. if in addition \(f(0) = 0 \), then \(\frac{1}{2} \|f\|_2^2 \leq \text{Area of } f(\Delta) \).

In this note we prove a theorem which strengthens (1) above:

Theorem. Let \(f \) be analytic on \(\Delta \). For \(R > 0 \), let

\[
A(R) = \text{Area of } \{|z| \leq R\} \cap f(\Delta).
\]

If \(A(R)(R^{-2} \log R) \to 0 \) as \(R \to +\infty \), then \(f \in H^p \) for all \(p \) satisfying \(0 < p < +\infty \).

We remark that while weakening the hypothesis of (1) by replacing the condition "\(A(R) \) bounded" by the condition "\(A(R)(R^{-2} \log R) \to 0 \) as \(R \to +\infty \)" we have been able to strengthen the conclusion and get \(f \in H^p \) for all \(0 < p < +\infty \). This new hypothesis is almost best possible since the inequality \(A(R)R^{-2} \leq \pi \) holds for any complex-valued function \(f \).

We remark further that the proof will make no use of the fact that the domain of \(f \) is the unit disk, and hence the Theorem remains valid if \(\Delta \) is replaced by any region.

Proof. Without loss of generality, we assume that \(f(0) = 0 \) and that \(f \) is unbounded. For \(t > 0 \), we define

\[
\theta(t) = \text{Angular Lebesgue measure of } \{|z| = t\} \cap f(\Delta),
\]

\[
\alpha(t) = \text{Angular Lebesgue measure of longest subarc of } \{|z| = t\} \cap f(\Delta),
\]

Received by the editors September 20, 1973.

Key words and phrases. Hardy classes, functions with finite area.
and
\[\chi(t) = 0 \quad \text{if } \{ |z| = t \} \subset \partial \Delta, \]
\[= 1 \quad \text{if } \{ |z| = t \} \not\subset \partial \Delta. \]

For \(R > 1 \), let
\[B(R) = \frac{\pi}{\log R} \int_1^R \frac{\chi(t)}{t \alpha(t)} \, dt. \]

Theorem 3.1 of [2] states that \(f \in H^p \) for all \(p \) satisfying \(0 < p < \lim \inf_{R \to +\infty} B(R) \), and thus our theorem will follow if we can show that \(B(R) \to +\infty \) as \(R \to +\infty \). From the definitions of \(\theta \) and \(\alpha \) we get the inequalities
\[A(R) = \int_0^R t \theta(t) \, dt \geq \int_0^R t \alpha(t) \, dt \]
\[\geq \int_{[0,R] \cap \{ \alpha(t) = 2\pi \}} t \alpha(t) \, dt = 2\pi \int_{[0,R] \cap \{ \alpha(t) = 2\pi \}} t \, dt. \]

Let \(m(R) \) = Lebesgue measure of \([0, R] \cap \{ \alpha(t) = 2\pi \} \). Then, since \(g(t) = t \) is an increasing function of \(t \), we get
\[A(R) \geq 2\pi \int_0^R t \, dt = \pi [m(R)]^2. \]

Multiplying both sides of this inequality by \(R^{-2} \log R \) and recalling the original assumption on \(A(R) \), we conclude that \(R^{-1} m(R) \to 0 \) as \(R \to +\infty \).

Now \(R - 1 - m(R) \leq \int_0^R \chi(t) \, dt \), and hence
\[(R - 1 - m(R))^2 \leq \left(\int_1^R \chi(t) \, dt \right)^2 \]
if \(R - 1 - m(R) \geq 0 \). An application of the Schwarz inequality yields
\[\left(\int_1^R \chi(t) \, dt \right)^2 \leq \left(\int_1^R t \alpha(t) \, dt \right) \left(\int_1^R \frac{\chi(t)}{t \alpha(t)} \, dt \right) \leq A(R)(1/\pi)B(R) \log R. \]

Since \(R - 1 - m(R) \geq 0 \) for large \(R \), we get the inequality
\[\pi [R - 1 - m(R)]^2 / A(R) \log R \leq B(R). \]

Using the fact that \(R^{-1} m(R) \to 0 \) and \(A(R)R^{-2} \log R \to 0 \) as \(R \to +\infty \), we conclude that \(B(R) \to +\infty \) as \(R \to +\infty \), which completes the proof.

REFERENCES
