RIESZ SEMINORMS WITH FATOU PROPERTIES

C. D. ALIPRANTIS

ABSTRACT. A seminormed Riesz space \(L_\rho \) satisfies the \(\sigma \)-Fatou property (resp., the Fatou property) if \(\theta \leq u \downarrow u \) in \(L \) (resp., \(\theta \leq u \downarrow u \) in \(L \)) implies \(\rho(u_n) \downarrow \rho(u) \) (resp., \(\rho(u_a) \downarrow \rho(u) \)). The following results are proved:

(i) A normed Riesz space \(L_\rho \) satisfies the \(\sigma \)-Fatou property if, and only if, its norm completion does and \(L_\rho \) has \((A, 0) \).

(ii) The quotient space \(L_\rho/I_\rho \) has the Fatou property if \(L_\rho \) is Archimedean with the Fatou property, \((I_\rho = \{ u \in L: \rho(u) = 0 \}) \).

(iii) If \(L_\rho \) is almost \(\sigma \)-Dedekind complete with the \(\sigma \)-Fatou property, then \(L_\rho/I_\rho \) has the \(\sigma \)-Fatou property.

A counterexample shows that (iii) may be false for Archimedean Riesz spaces.

1. Riesz seminorms. For notation and terminology not explained below we refer the reader to [5]. A seminormed Riesz space \(L_\rho \) is a Riesz space \(L \) equipped with a seminorm \(\rho \) satisfying \(\rho(u) \leq \rho(v) \) whenever \(|u| \leq |v| \) holds in \(L \).

For seminormed Riesz spaces \(L_\rho \) the following properties were introduced:

\((A, 0) \): \(u_n \downarrow \theta \) in \(L \) and \(\{ u_n \} \) is a \(\rho \)-Cauchy sequence implies \(\rho(u_n) \to 0 \).

\((A, i) \): \(u_n \downarrow \theta \) in \(L \) implies \(\rho(u_n) \to 0 \).

\((A, ii) \): \(u_a \downarrow \theta \) in \(L \) implies \(\rho(u_a) \to 0 \).

Following Luxemburg and Zaanen [4, Notes II and XIII] we also have:

Definition 1.1 (\(\sigma \)-Fatou property). A seminormed Riesz space \(L_\rho \) satisfies the \(\sigma \)-Fatou property whenever \(\theta \leq u_n \uparrow u \) in \(L \) implies \(\rho(u_n) \uparrow \rho(u) \).

(Fatou property). A seminormed Riesz space \(L_\rho \) satisfies the Fatou property whenever \(\theta \leq u_a \uparrow u \) in \(L \) implies \(\rho(u_a) \uparrow \rho(u) \).

Obviously the Fatou implies the \(\sigma \)-Fatou, \((A, i) \) implies the \(\sigma \)-Fatou and \((A, ii) \) implies the Fatou property. Also the \(\sigma \)-Fatou implies the \((A, 0) \) property. Indeed, if \(\{ u_n \} \) is a \(\rho \)-Cauchy sequence with \(u_n \downarrow \theta \) in \(L \), then
\[\theta \leq u_m - u_n \uparrow_{n \geq m} u_m \text{ in } L, \text{ for each fixed } m, \text{ and hence } \rho(u_m - u_n) \uparrow_{n \geq m} \rho(u_m). \text{ This implies } \rho(u_n) \to 0. \]

Example 1.2. (i) Let \(L \) be the Riesz space of all real sequences which are eventually constant. Let \(\rho(u) = |u(\infty)| + \sup \{|u_n| : n = 1, 2, \ldots \} \) for all \(u \in L \). \(u(\infty) = u(n) \) for all sufficiently large \(n \). Note that the \(\sigma \)-Fatou property does not hold in \(L_\rho \). However \(L_\rho \) does satisfy the \((A, 0)\) property.

(ii) Let \(L \) be as in (i) and let \(\rho(u) = \sup \{|u(n)| : n = 1, 2, \ldots \} \) for all \(u \). Then \(L_\rho \) is noncomplete with the Fatou property. Note that \((A, i)\) does not hold.

(iii) Let \(L \) be the Riesz space of all bounded real valued Lebesgue measurable functions defined on \([0, 1]\), with \(f \leq g \) if \(f(x) \leq g(x) \) for all \(x \in [0, 1] \). Let \(\rho(u) = \int_0^1 |u(x)| \, dx + \sup \{|u(x)| : x \in [0, 1] \} \) for all \(u \in L \). Note that \(L \) is \(\rho \)-complete with the \(\sigma \)-Fatou property but without the Fatou property.

(iv) The cartesian product of the spaces in (ii) and (iii) with the product norm gives a noncomplete normed Riesz space without the Fatou and \((A, i)\) properties, but with the \(\sigma \)-Fatou property. \(\square \)

We recall that a Riesz subspace \(L \) of a Riesz space \(M \) is said to be order dense in \(M \) if \(\sup \{v \in L : \theta \leq v \leq u\} = u \) holds in \(M \) for all \(u \in M^+ \). If \(M \) is Archimedean (and hence so is \(L \)) then the universal completion of \(M \) \([5, \text{pp. 338–341}]\) equally serves as the universal completion of \(L \); consequently \(M \) can be considered as a Riesz subspace of the universal completion of \(L \). Now, if \(L_\rho \) is a normed Riesz space with \((A, 0)\) then \(L_\rho \) is order dense in its norm completion \(\overline{L}_\rho \) \([3, \text{Theorem 61.5, p. 652}]\) and so \(\overline{L}_\rho \) "seats" in the universal completion of \(L \) as an order dense Riesz subspace. This observation will be used in the next theorem.

Theorem 1.3. If the normed Riesz space \(L_\rho \) satisfies the \(\sigma \)-Fatou property, then we have:

(i) The norm completion \(\overline{L}_\rho \) of \(L_\rho \) satisfies the \(\sigma \)-Fatou property.

(ii) \(\rho(u) = \inf \{ \lim \rho(u_n) : \{u_n\} \subseteq L^+, u_n \uparrow \text{ and } u_n \wedge |u| \uparrow |u| \text{ in } \overline{L}_\rho \} \), for every \(u \in \overline{L}_\rho \).

Proof. Let \(K \) be the universal completion of \(L \) \([5, \text{Theorem 50.8, p. 340}]\). Define \(\lambda \) on \(K \) by the formula:

\[\lambda(u) = \inf \{ \lim \rho(u_n) : \{u_n\} \subseteq L^+; u_n \uparrow \text{ and } u_n \wedge |u| \uparrow |u| \text{ in } K \} \]

with \(\inf \emptyset = +\infty \). Then we have:

(i) \(\lambda(u) = \rho(u) \) for all \(u \) in \(L \).
To verify (i) use the σ-Fatou property of ρ.

(ii) $\lambda(u) = \lambda(|u|)$ for all u in K, and $\theta \leq u \leq v$ in K implies $\lambda(u) \leq \lambda(v)$.

(iii) $\lambda(u) \geq 0$ for all u in K and $\lambda(u) = 0$ implies $u = \theta$.

To see (iii) use the order density of L in K.

(iv) $\lambda(u + v) \leq \lambda(u) + \lambda(v)$, $\lambda(\alpha u) = |\alpha| \lambda(u)$ for all u, v in K and all α in R.

(v) If $\{u_n\} \subseteq L^+$ and $\theta \leq u_n \uparrow u$ in K, then $\rho(u_n) \uparrow \lambda(u)$.

(vi) Let $U = \{u \in K^+: \theta \leq u_n \uparrow u$, for some sequence $\{u_n\} \subseteq L^+\}$. Assume $\theta \leq u_n \uparrow u$ in K, $\{u_n\} \subseteq U$ and $\lambda(u_n) \uparrow \alpha < +\infty$. Then $\theta \leq u_n \uparrow u$ in K and $\lambda(u) = \alpha$ for some u in U.

To see (vi) pick $\{u_{n,k}: k = 1, 2, \cdots \} \subseteq L^+$ such that $u_{n,k} \uparrow u_n (n = 1, 2, \cdots)$. Define $w_n = \sup\{u_{i,n}: i = 1, \cdots, n\} \in L^+$ ($n = 1, 2, \cdots$) and note that $\rho(w_n) \leq \alpha$ for all n. Now, let $\theta < v \in L$. Pick $m \in N$ such that $mp(v) = \rho(mv) > \alpha$ and observe that $w_n \wedge mv \uparrow mv$ implies $\rho(mv) \leq \alpha$. So, $\sup\{w_n \wedge mv: n = 1, 2, \cdots\} < mv$. This observation implies $\theta \leq w_n \uparrow u$ in K [2, Proposition 1, p. 342]. (Since E is order dense in $C_\infty(X)$, observe that Fremlin’s proof works if we replace the assumption “for every $x > 0$ in $C_\infty(X)$” by “for every $x > 0$ in E”.). Thus $\theta \leq w_n \uparrow u$ and $u \in U$. Now, combine (v) with the relation $w_n \leq u_n$ for all n to obtain $\theta \leq u_n \uparrow u$ and $\lambda(u) = \alpha$.

(vii) Let $\theta \leq u$, $\lambda(u) < +\infty$ and let $\epsilon > 0$. Then there exists $\nu \in U$, $u \leq \nu$ such that $\lambda(\nu) \leq \lambda(u) + \epsilon$.

To verify (vii), pick $\{u_n\} \subseteq L^+$, $u_n \uparrow u$, $u_n \wedge |u| \uparrow |u|$ and such that $\lim \rho(u_n) \leq \lambda(u) + \epsilon$. As in case (vi) note that $u_n \uparrow \nu$ in K for some ν of U. Now use (v) to obtain $\lambda(\nu) \leq \lambda(u) + \epsilon$.

(viii) Let $L_\lambda = \{u \in K: \lambda(u) < +\infty\}$. Then L_λ is a complete normed Riesz space.

For (viii) use (vii) and a routine argument to show that L_λ satisfies the Riesz-Fischer property and hence it is λ-complete [4, Theorem 26.3, Note VIII, p. 105].

(ix) The closure of L_ρ in L_λ, $\overline{L_\rho}$, is the norm completion of L_ρ.

Now, let $\theta \leq u_n \uparrow u$ in $\overline{L_\rho}$. Since L is order dense in K, $u_n \uparrow u$ also holds in K. Given $\epsilon > 0$, pick an element $u_0 \in \overline{L_\rho}$, $u \leq u_0$, $u_0 \in U$ with $\lambda(u_0 - u) < \epsilon$ (see [3, Theorem 60.3, p. 648]). Similarly pick $v_n \in \overline{L_\rho}$, $u_n \leq v_n \leq u_0$, $\lambda(v_n - u_n) \leq \epsilon/2^{n+1}$ and $v_n \in U$, $n = 1, 2, \cdots$. Put $w_n = \sup\{v_i: i = 1, \cdots, n\}$ ($n = 1, 2, \cdots$) and note $\lambda(w_n - u_n) \leq \epsilon$ and $u_n \leq w_n \leq u_0$ for all n. Hence $w_n \uparrow u_1 \leq u_0$ in L_λ and so $u \leq u_1 \leq u_0$ in L_λ. But then $\lambda(u) \leq \lambda(u_1) = \lim \lambda(w_n) \leq \lim \lambda(u_n) + \epsilon$ for all $\epsilon > 0$. Hence $\lambda(u_n) \uparrow \lambda(u)$, i.e.,
\(\bar{L}_\rho \) satisfies the \(\sigma \)-Fatou property. Part (ii) follows immediately from the above construction. \(\square \)

Corollary 1.4. Let \(L_\rho \) be a normed Riesz space with norm completion \(\bar{L}_\rho \). Then the following statements are equivalent.

(i) \(L_\rho \) satisfies the \(\sigma \)-Fatou property.

(ii) \(L_\rho \) satisfies the \(\sigma \)-Fatou property and \(L_\rho \) has \((A, 0) \).

Proof. To see that (ii) implies (i) use Theorem 61.5 of [3, p. 652]. \(\square \)

For \(L = C([0, 1]) \) and \(\rho(u) = \int_0^1 |u(x)| \, dx \) we have \(\bar{L}_\rho = L_1([0, 1]) \). Note that \(\bar{L}_\rho \) satisfies the \(\sigma \)-Fatou property (in fact the \((A, ii) \) property). However, \(L_\rho \) does not satisfy the \((A, 0) \) property [5, Exercise 18.14(i), p. 104].

We close this section recalling a notion useful for the next section. A Riesz space \(L \) is called almost \(\sigma \)-Dedekind complete if it can be embedded as a super order dense Riesz subspace of a \(\sigma \)-Dedekind complete Riesz space \(K \), i.e., if \(L \) is a Riesz subspace of \(K \) (more precisely \(L \) is Riesz isomorphic to a Riesz subspace of \(K \)) such that for every \(\theta \leq u \in K \), there exists a sequence \(\{u_n\} \subseteq L \) with \(\theta \leq u_n \uparrow u \) in \(K \) (see [1]).

2. The quotient Riesz space. \(L_\rho / I_\rho \). The null ideal of a given seminormed Riesz space \(L_\rho \) is denoted by \(I_\rho \), i.e., \(I_\rho = \{u \in L : \rho(u) = 0\} \). It is evident that \(I_\rho \) is a \(\sigma \)-ideal (resp. a band) if \(\rho \) satisfies the \(\sigma \)-Fatou property (resp. the Fatou property). It is also obvious that the quotient Riesz space \(L_\rho / I_\rho \) becomes a normed Riesz space under the norm \([\rho]([u]) = \rho(u) \) (\([u] \) denotes the equivalence class of \(u \)).

Question: If \(L_\rho \) satisfies the \(\sigma \)-Fatou property, does the normed Riesz space \(L_\rho / I_\rho \) satisfy the \(\sigma \)-Fatou property?

The next theorem gives a condition for the answer to be affirmative.

Theorem 2.1. Assume that the seminormed Riesz space \(L_\rho \) satisfies the \(\sigma \)-Fatou property and that \(L \) is almost \(\sigma \)-Dedekind complete. Then the normed Riesz space \(L_\rho / I_\rho \) satisfies the \(\sigma \)-Fatou property.

Proof. Let \(K \) be a \(\sigma \)-Dedekind complete Riesz space containing \(L \) as a super order dense Riesz subspace. We can assume that the ideal generated by \(L \) is all of \(K \). Given \(u \in K \) pick \(\{u_n\} \subseteq L \) with \(\theta \leq u_n \uparrow |u| \) in \(K \) and define \(\lambda(u) = \lim \rho(u_n) \). Note that \(\lambda(u) \) is independent of the sequence chosen and that \(\lambda \) is a Riesz seminorm of \(K \) with the \(\sigma \)-Fatou property and with \(\lambda = \rho \) on \(L \).

Let \(L / I_\lambda \) be the canonical image of \(L \) in \(K / I_\lambda \). Observe that \(L_\rho / I_\rho \)
is Riesz isomorphic to L/I_λ (the mapping $[u] = u + I_\rho \rightarrow u + I_\lambda = [u]$ does it) and that the quotient norm $[\rho]$ on L_ρ/I_ρ and the norm induced from K_λ/I_λ to L/I_λ coincide. Now let $[\theta] \leq [u_n] \uparrow [u]$ in L_ρ/I_ρ, so $[\theta] \leq [u_n] \uparrow [u]$ holds also in L/I_λ. We can assume $\theta \leq u_n \uparrow u$ in L, so $\theta \leq u_n \uparrow v \leq u$ holds in K and hence $[\theta] \leq [u_n] \uparrow [v]$ in K_λ/I_λ [5, Theorem 18.11, p. 103]. Since L/I_λ is order dense in K_λ/I_λ, $[u_n] \uparrow [u]$ also holds in K/I_λ and hence $[v] = [u]$, so $\lambda(v) = \lambda(u) = \rho(u)$.

Thus $[\rho]([u_n]) = \rho(u_n) = \lambda(u_n) \uparrow \lambda(v) = \rho(u) = [\rho]([u])$, and the proof is finished. □

Question: If we replace the almost σ-Dedekind completeness of L by Archimedeanness is Theorem 2.1 still true?

The following example shows that the answer is negative in general.

Example 2.2. Let L be the Archimedean Riesz space $C(R_\infty)$. (R_∞ is the one point compactification of the real numbers considered with the discrete topology (see [5, Example (v), p. 141]). Note that L is not almost σ-Dedekind complete. Now, define the Riesz seminorm ρ on L, by $\rho(u) = |u(\infty)| + \sup \{|u(n)| : n = 1, 2, \ldots\}$. Note that ρ satisfies the σ-Fatou property but not the Fatou property. (In fact ρ satisfies the (A, i) property.) Note also that I_ρ is a band.

Now, let $u_n = \chi\{1, \ldots, n\}$, $n = 1, 2, \ldots$. Then $\theta \leq u_n \uparrow e$ in L ($e(x) = 1$ for all $x \in R$) and $\rho(u_n) = 1$ for all n. It is easily seen that $[\theta] \leq [u_n] \uparrow [e]$ holds in L_ρ/I_ρ. But $[\rho]([u_n]) = \rho(u_n) = 1 \uparrow [\rho]([e]) = \rho(e) = 2$.

Hence L_ρ/I_ρ does not satisfy the σ-Fatou property. □

A better situation holds if ρ satisfies the Fatou property. The next theorem tells us that L_ρ/I_ρ satisfies the Fatou property if L_ρ does.

Theorem 2.3. Let L_ρ be an Archimedean seminormed Riesz space with the Fatou property. Then the normed Riesz space L_ρ/I_ρ satisfies the Fatou property.

Proof. Repeat the proof of Theorem 2.1 replacing K by L^δ, the Dedekind completion of L. □

REFERENCES

Current address: STD Research Corporation, 150 E. Foothill, Arcadia, California 91006 and Department of Mathematics, Occidental College, Los Angeles, California 90041