BOUNDDED SOLUTIONS OF THE EQUATION $\Delta u = pu$

ON A RIEMANNIAN MANIFOLD

YOUNG K. KWON

ABSTRACT. Given a nonnegative C^1-function $p(x)$ on a Riemannian manifold R, denote by $B_p(R)$ the Banach space of all bounded C^2-solutions of $\Delta u = pu$ with the sup-norm. The purpose of this paper is to give a unified treatment of $B_p(R)$ on the Wiener compactification for all densities $p(x)$. This approach not only generalizes classical results in the harmonic case ($p = 0$), but it also enables one, for example, to easily compare the Banach space structure of the spaces $B_p(R)$ for various densities $p(x)$. Typically, let $\beta(p)$ be the set of all p-potential nondensity points in the Wiener harmonic boundary Δ, and $C_p(\Delta)$ the space of bounded continuous functions f on Δ with $f|_{\Delta - \beta(p)} = 0$.

Theorem. The spaces $B_p(R)$ and $C_p(\Delta)$ are isometrically isomorphic with respect to the sup-norm.

Throughout this paper R is an orientable Riemannian C^∞-manifold of dim ≥ 2, and $p(x)$ is a nonnegative C^1-function on R. Denote by $B_p(R)$ the space of bounded C^2-solutions u on R of the elliptic equation $\Delta u = pu$, where Δu is the Laplacian of u on R. As one studies bounded harmonic functions on the Wiener compactification, the space $B_p(R)$ has been investigated on the so-called Wiener p-compactification (cf. Loeb and Walsh [2], Wang [9]). However, their consideration restricts one to construct different compactifications for different densities $p(x)$.

The purpose of the present paper is to give a unified treatment of the spaces $B_p(R)$ on the Wiener compactification R^* for all densities $p(x)$. This approach, for instance, enables one to easily compare the linear space structure of the spaces $B_p(R)$ for various densities $p(x)$. Typically, let $\beta(p)$ be the set of p-potential nondensity points x in the Wiener harmonic boundary Δ (see below for its definition), and $C_p(\Delta)$ the space of bounded
continuous functions \(f \) on \(\Delta \) such that \(f|\Delta - \beta(p) = 0 \). Then \(B_p(R) \) and \(C_p(\Delta) \) are isometrically isomorphic with respect to the sup-norm.

For the notation and terminology we refer the reader to Sario and Nakai [8, Chapter 4].

The author is very grateful to the referee for valuable improvements.

1. First we observe a simple fact.

Lemma. Every \(u \in B_p(R) \) is continuously extendable to the Wiener compactification \(R^* \) of \(R \). Furthermore \(u \) has the property \(\|u\| = \max_{\Delta} |u| \), where \(\|\cdot\| \) is the sup-norm and \(\Delta \) is the Wiener harmonic boundary.

A point \(x \in \Delta \) will be called a \(p \)-potential nondensity point if there exists an open neighborhood \(U^* \) of \(x \) in \(R^* \) such that

\[
\sup_{a \in U} \int_U G_U(a, y)p(y) \, dy < \infty,
\]

where \(U = U^* \cap R \), \(G_U(a, y) \) is the (harmonic) Green's function for \(U \), and \(dy \) is the (Riemannian) volume element of \(R \). Denote by \(\beta(p) \) the set of all \(p \)-potential nondensity points in \(\Delta \) (cf. Nakai [5]).

For \(p \not= 0 \) the above maximum principle is too crude for our purpose:

Theorem. Every \(u \in B_p(R) \) has the property \(\|u\| = \max_{\beta(p)} |u| \).

Proof. It suffices to show that \(u = 0 \) on \(\Delta - \beta(p) \). To the contrary suppose that \(u(x) = 2\epsilon > 0 \) for some \(x \in \Delta - \beta(p) \). Choose an open neighborhood \(U^* \) of \(x \) in \(R^* \) such that \(u > \epsilon \) on \(U^* \). Set \(U = U^* \cap R \). We may modify \(U \) to have a smooth \(\partial U \). Let \(\{\Omega_n\}_{n=1}^\infty \) be a "regular" exhaustion of \(U \). By Stokes' formula

\[
u(z) = h_n(z) - \int_{\Omega_n} G_n(z, y)p(y)u(y) \, dy
\]
on \(\Omega_n \), where \(h_n \in B_0(\Omega_n) \) with \(h_n|_{\partial \Omega_n} \equiv u \) and \(G_n(z, y) \) is the Green's function for \(\Omega_n \). Therefore it is seen that

\[0 \leq \int_{\Omega_n} G_n(z, y)p(y)u(y) \, dy \leq \|u\|\]
on \(\Omega_n \). By the monotone convergence theorem, we deduce that

\[
\int_U G_U(z, y)p(y) \, dy \leq \|u\|/\epsilon
\]
on U, a contradiction to the fact that $x \notin \beta(\rho)$.

2. For a parabolic R, the space $B_p(R) = \{0\}$ or the real number field according as $p \neq 0$ or $p = 0$ (Ozawa [6]). We thus assume that R is hyperbolic. Set

$$H_pB(R) = \{u \in B_0(R)|u \equiv 0 \text{ on } \Delta - \beta(\rho)\}.$$

It is not difficult to see that $C_p(\Delta)$ and $H_pB(R)$ are isometrically isomorphic Banach spaces with the sup-norm $\|\cdot\|$.

Theorem. For any density $\rho(x)$ on R the Banach spaces $B_p(R)$ and $C_p(\Delta)$ are isometrically isomorphic. In particular

$$C_p(\Delta) = \{u|\Delta: u \in B_p(R)\}.$$

Proof. It suffices to show that every $h \in C_p(\Delta)$ can be extended to a function in $B_p(R)$.

Without loss of generality we may assume that $h \in H_pB(R)$ and $h \geq 0$ on R. Define $\nu(z) = \sup \{|u(z)|u \in F_h\}$, where $F_h = \{u \in B_p(R)|0 \leq u \leq h \text{ on } R\}$. Since the class F_h forms a Perron family for $\Delta u = pu$, it follows that $\nu \in B_p(R)$. We need to prove that $\nu \equiv h$ on $\beta(\rho)$.

On the contrary, assume that there exists a point $x \in \beta(\rho)$ such that $h(x) > \nu(x) \geq 0$. Let ϵ be a positive constant with $\nu(x) < \epsilon < h(x)$. Choose an open neighborhood U^* of x in R^* such that $h > \epsilon > \nu$ on U^*, $U = U^* \cap R$ has smooth ∂U, and $\sup_{a \in U} \int_U G_U(a, y)p(y)dy < \infty$. Take n so large that $\sup_{a \in U} \int_U G_U(a, y)p(y)dy < n$.

For any $\phi \in C(U)$, the space of bounded continuous functions on U, define an integral operator T by

$$(T\phi)(z) = -\frac{1}{n} \int_U G_U(z, y)p(y)\phi(y)dy.$$

It is well known (cf. e.g. Miranda [3, p. 25]) that T is a linear operator in $C(U)$ and its operator norm satisfies

$$\|T\| \leq \frac{1}{n} \sup_{a \in U} \int_U G_U(a, y)p(y)dy < 1.$$

Thus the Fredholm integral equation $(I - T)u = k$ has a unique solution u, where I is the identity operator in $C(U)$ and $k \in B_0(U)$ such that $k|\partial U \equiv 0$, $0 \leq k \leq h$ on U, and $k(x) = h(x)$. Clearly $u \in B_{n-1}p(U)$, $u \equiv k$ on $(\partial U) \cup (U^* \cap \Delta)$, and $0 \leq u \leq k$ on U. Extend u to R by setting $u|R - U \equiv 0$ and then construct $u_0 \in B_{n-1}p(R)$ such that $u \leq u_0 \leq pu$ on R. Here pu is the harmonic projection of u on R. Note that $u_0(x) = h(x)$, $u_0 \equiv 0$ on $\Delta - U^*$, and $u_0 \leq h$ on R.
Let \(\{ R_i \}^\infty_{i=1} \) be a regular exhaustion of \(R \) and take \(w_i \in B_p(R) \) such that \(w_i \equiv u_0 \) on \(R - R_i \). In view of \(\Delta u_0 = n^{-1} p u_0 \leq pu_0 \) on \(R \), it is not difficult to see that \(0 \leq w_i \leq w_{i+1} \leq u_0 \) on \(R \) and \(\| w_i \| = \| u_0 \| \). By Harnack's principle for \(\Delta u = pu \), the sequence \(\{ w_i \} \) converges, uniformly on a compact subset of \(R \), to a function \(w \in B_p(R) \), such that \(0 \leq w \leq u_0 \) on \(R \) and \(\| w \| = \| u_0 \| \). Since \(w \equiv 0 \) on \(\Delta - U^* \), we conclude that

\[
\max_{U^* \cap \Delta} w = \| w \| = \| u_0 \| = \max_{U^* \cap \Delta} u_0(x) = h(x) > \epsilon.
\]

In view of \(w \in F_h \), \(\max_{U^* \cap \Delta} w \geq \max_{U^* \cap \Delta} u > \epsilon \). But this contradicts our choice of \(U \) : \(v < \epsilon \) on \(U^* \).

This completes the proof of our theorem.

3. As an application of our theorem we would like to mention its contribution to the comparison problem of the spaces \(B_p(R) \) for various densities \(p(x) \). In this vein an elegant result of Royden [7] states: if \(p(x) \) and \(q(x) \) are two densities such that for some constant \(\alpha > 1 \), \(\alpha^{-1} p(x) \leq q(x) \leq \alpha p(x) \) off some compact subset of \(R \), then \(B_p(R) \) and \(B_q(R) \) are isometric. Later Nakai [4] found another important criterion: the same conclusion holds if \(\int_R |p(x) - q(x)| \, dx < \infty \).

The following result considerably sharpens their conclusions in view of the fact that \(\Delta \) is topologically "small" in \(R^* - R \).

Corollary. Banach spaces \(B_p(R) \) and \(B_q(R) \) are isometrically isomorphic in each of the following cases:

(i) there exists a constant \(\alpha > 1 \) such that \(\alpha^{-1} p(x) \leq q(x) \leq \alpha p(x) \) in some open neighborhood \(U^* \) of \(\Delta \) in \(R^* \);

(ii) there exists an open neighborhood \(U^* \) of \(\Delta \) in \(R^* \) such that \(\int_{U^* \cap R} |p(x) - q(x)| \, dx < \infty \).

Proof. In case (i), it is easy to see that \(\beta(p) = \beta(q) \). Now assume that condition (ii) holds. Contrary to our conclusion, suppose that there exists a point \(a \in \beta(p) - \beta(q) \). In this case there exists a \(u \in B_p(R) \) such that \(0 < u < 1 \) on \(R \) and \(u(a) = 1 \). Since \(a \not\in \beta(q) \), \(u(a) = 0 \) for \(v \in B_q(R) \). Choose an open neighborhood \(V^* \) of \(a \) in \(R^* \) such that

\[
\sup_{x \in V} \int_V G_V(x, y)p(y) \, dy < \infty \quad \text{and} \quad \int_V |p(x) - q(x)| \, dx < \infty,
\]

where \(V = V^* \cap R \). It can be shown from the second inequality that

\[
\int_V G_V(x, y)p(y) - q(y) \, dy < \infty
\]
for each $x \in V$. For a "regular" exhaustion $\{\Omega_n\}_{n=1}^\infty$ of V construct v_n on V such that $v_n \in B_q(\Omega_n)$ and $v_n \equiv u$ on $V - \Omega_n$. Then we can write

$$u(x) = h_n(x) - \int_{\Omega_n} G_n(x, y)p(y)v_n(y) \, dy,$$

$$v_n(x) = h_n(x) - \int_{\Omega_n} G_n(x, y)q(y)v_n(y) \, dy$$

on Ω_n, where $h_n \in B_0(\Omega_n)$ with $h_n|\partial\Omega_n = u$ and $G_n(x, y)$ is the Green's function on Ω_n. Since $0 \leq h_n \leq 1$ and $0 \leq v_n \leq 1$, we may assume that $h_n \to h \in B_0(V)$ and $v_n \to v \in B_q(V)$, uniformly on compact subsets of V. In view of

$$|u(x) - v_n(x)| \leq \int_{\Omega_n} G_n(x, y)|q(y) - p(y)|v_n(y) \, dy$$

$$+ \int_{\Omega_n} G_n(x, y)p(y)|v_n(y) - u(y)| \, dy$$

$$\leq \int_{\Omega_n} G_v(x, y)[|q(y) - p(y)| + p(y)] \, dy$$

we conclude that

$$|u(x) - v(x)| \leq \int_V G_v(x, y)[|q(y) - p(y)| + p(y)] \, dy$$

on V and therefore on $V \cup \{a\}$. Note that all three functions in the above inequality have continuous extensions to V^*. Since the Green’s potential vanishes on $V^* \cap \Delta$, we deduce that $u(a) = u(a) = 1$, a contradiction to the fact that $a \notin \beta(q)$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712