Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. II
HTML articles powered by AMS MathViewer
- by Barry Simon
- Proc. Amer. Math. Soc. 45 (1974), 454-456
- DOI: https://doi.org/10.1090/S0002-9939-1974-99954-0
- PDF | Request permission
Part I: Proc. Amer. Math. Soc. 42, no. 2 (1974), 395-401
Abstract:
We provide a simple proof (and mild improvement) of Schnolâs result that ${L^2}$ eigenfunctions of $- \Delta + V$ are $O(\exp ( - ar))$ for any $a > 0$ whenever $V \to \infty$ as $r \to \infty$.References
- E. B. Davies, Properties of the Greenâs functions of operators, J. London Math. Soc. (to appear).
- J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251â270. MR 391792, DOI 10.1007/BF01646473
- Tosio Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Comm. Pure Appl. Math. 10 (1957), 151â177. MR 88318, DOI 10.1002/cpa.3160100201
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572â615. MR 107176, DOI 10.2307/1970331
- A. J. OâConnor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319â340. MR 336119, DOI 10.1007/BF01645613
- M. Rid and B. SaÄmon, Metody sovremennoÄ matematicheskoÄ fiziki. 1: FunktsionalâČnyÄ analiz, Izdat. âMirâ, Moscow, 1977 (Russian). Translated from the English by A. K. Pogrebkov and V. N. SuĆĄko; With a preface by N. N. Bogoljubov; Edited by M. K. Polivanov. MR 0493422
- V. de Alfaro and T. Regge, Potential scattering, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1965. MR 0191316 J. E. Ć nolâ, On the behavior of the eigenfunctions of Schrödingerâs equation, Mat. Sb. 46 (88) (1957), 273-286; erratum, 259. (Russian) MR 23 #A2618.
- Barry Simon, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. I, II, Proc. Amer. Math. Soc. 42 (1974), 395â401: ibid. 45 (1974), 454â456. MR 417596, DOI 10.1090/S0002-9939-1974-0417596-0 â, Quantum mechanics for Hamiltonians defined on quadratic forms, Princeton Univ. Press, Princeton, N. J., 1971.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 454-456
- MSC: Primary 35P99; Secondary 81.47
- DOI: https://doi.org/10.1090/S0002-9939-1974-99954-0
- MathSciNet review: 0417596