On generating functions of classical polynomials
HTML articles powered by AMS MathViewer
- by Arun Verma
- Proc. Amer. Math. Soc. 46 (1974), 73-76
- DOI: https://doi.org/10.1090/S0002-9939-1974-0344537-7
- PDF | Request permission
Abstract:
An expansion of an arbitrary power series in terms of products of a power series and a polynomial $p_n^{(\alpha ,\beta )}(x)$ (where $\alpha ,\beta$ are not necessarily independent of $n$) is given.References
- Nadhla A. Al-Salam, A class of hypergeometric polynomials, Ann. Mat. Pura Appl. (4) 75 (1967), 95–120. MR 217345, DOI 10.1007/BF02416800
- J. W. Brown, On zero type sets of Laguerre polynomials, Duke Math. J. 35 (1968), 821–823. MR 234027
- J. W. Brown, New generating functions for classical polynomials, Proc. Amer. Math. Soc. 21 (1969), 263–268. MR 236438, DOI 10.1090/S0002-9939-1969-0236438-8
- L. Carlitz, Some generating functions for Laguerre polynomials, Duke Math. J. 35 (1968), 825–827. MR 240351
- Ervin Feldheim, Relations entre les polynomes de Jacobi, Laguerre et Hermite, Acta Math. 75 (1943), 117–138 (French). MR 12724, DOI 10.1007/BF02404102
- H. W. Gould, A series transformation for finding convolution identities, Duke Math. J. 28 (1961), 193–202. MR 123895
- J. D. Niblett, Some hypergeometric identities, Pacific J. Math. 2 (1952), 219–225. MR 47837
- H. M. Srivastava, Generating functions for Jacobi and Laguerre polynomials, Proc. Amer. Math. Soc. 23 (1969), 590–595. MR 249694, DOI 10.1090/S0002-9939-1969-0249694-7 A. Verma, A class of generating functions of $G$-functions and the Laplace transform, Math. Comp. 19 (1965), 664-665.
- Letterio Toscano, Funzioni generatrici di particolari polinomi di Laguerre e di altri da essi dipendenti, Boll. Un. Mat. Ital. (3) 7 (1952), 160–167 (Italian). MR 0050062
- David Zeitlin, A new class of generating functions for hypergeometric polynomials, Proc. Amer. Math. Soc. 25 (1970), 405–412. MR 264123, DOI 10.1090/S0002-9939-1970-0264123-3
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 73-76
- MSC: Primary 33A30
- DOI: https://doi.org/10.1090/S0002-9939-1974-0344537-7
- MathSciNet review: 0344537