Localization properties of basic classes of $C^{\infty }$-functions
HTML articles powered by AMS MathViewer
- by R. B. Darst
- Proc. Amer. Math. Soc. 46 (1974), 24-28
- DOI: https://doi.org/10.1090/S0002-9939-1974-0346113-9
- PDF | Request permission
Abstract:
Suppose that each of $\mathfrak {M} = C\{ {M_n}\}$ and $\mathcal {K} = C\{ {K_n}\}$ is a basic class of ${C^\infty }$-functions defined on $I = [0,2\pi ]$ and $\mathfrak {M}$ is not a subset of $\mathcal {K}$. Then it is shown that $\mathfrak {M}$ contains functions which are nowhere locally in $\mathcal {K}$. One of the corollaries asserts that there are quasi-analytic functions which are nowhere locally analytic. It is also shown that many non-quasi-analytic classes contain functions which are nowhere locally quasi-analytic.References
- A. Gorny, Contribution à l’étude des fonctions dérivables d’une variable réelle, Acta Math. 71 (1939), 317–358 (French). MR 848, DOI 10.1007/BF02547758
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- S. Mandelbrojt, Analytic functions and classes of infinitely differentiable functions, Rice Inst. Pamphlet 29 (1942), no. 1, 142. MR 6354
- L. E. May, On $C^{\infty }$ functions analytic on sets of small measure, Canad. Math. Bull. 12 (1969), 25–30. MR 241594, DOI 10.4153/CMB-1969-003-5
- Walter Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill Book Co., New York, 1964. MR 0166310
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 24-28
- MSC: Primary 26A93
- DOI: https://doi.org/10.1090/S0002-9939-1974-0346113-9
- MathSciNet review: 0346113