Analogue of Pontryagin character theory for topological semigroups
HTML articles powered by AMS MathViewer
- by Thomas Bowman
- Proc. Amer. Math. Soc. 46 (1974), 97-105
- DOI: https://doi.org/10.1090/S0002-9939-1974-0348029-0
- PDF | Request permission
Abstract:
The character semigroups of a wide class of abelian continuous inverse semigroups are determined. A duality theorem is given for which a special case gives necessary and sufficient conditions for duality to hold for locally compact semigroups.References
- C. W. Austin, Duality theorems for some commutative semigroups, Trans. Amer. Math. Soc. 109 (1963), 245–256. MR 153776, DOI 10.1090/S0002-9947-1963-0153776-7
- Anne C. Baker and J. W. Baker, Duality of topological semigroups with involution, J. London Math. Soc. 44 (1969), 251–260. MR 236299, DOI 10.1112/jlms/s1-44.1.251
- John W. Baker and Neal J. Rothman, Separating points by semicharacters in topological semigroups, Proc. Amer. Math. Soc. 21 (1969), 235–239. MR 236301, DOI 10.1090/S0002-9939-1969-0236301-2
- Thomas T. Bowman, A construction principle and compact Clifford semigroups, Semigroup Forum 2 (1971), no. 4, 343–353. MR 292994, DOI 10.1007/BF02572301 —, Construction functors for topological semigroups (submitted).
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Ronald O. Fulp, Character semigroups of locally compact inverse semigroups, Proc. Amer. Math. Soc. 27 (1971), 613–618. MR 276401, DOI 10.1090/S0002-9939-1971-0276401-3
- J. D. Lawson, Topological semilattices with small semilattices, J. London Math. Soc. (2) 1 (1969), 719–724. MR 253301, DOI 10.1112/jlms/s2-1.1.719
- L. B. Šneperman, Finite-dimensional representations of some bicompact topological semigroups, Dokl. Akad. Nauk SSSR 176 (1967), 538–540 (Russian). MR 0219653
- L. B. Šneperman, On the theory of characters of locally bicompact topological semigroups, Mat. Sb. (N.S.) 77 (119) (1968), 508–532 (Russian). MR 0237703
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 97-105
- MSC: Primary 22A20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0348029-0
- MathSciNet review: 0348029