Necessary and sufficient conditions for factorability of nonnegative operator-valued functions on Banach space
HTML articles powered by AMS MathViewer
- by A. G. Miamee and H. Salehi
- Proc. Amer. Math. Soc. 46 (1974), 43-50
- DOI: https://doi.org/10.1090/S0002-9939-1974-0348830-3
- PDF | Request permission
Abstract:
Several necessary and sufficient conditions for factorability of positive operator-valued functions on a Banach space are given. These characterizations involve the analysis of quasi square root and their corresponding invariant subspaces. The work extends to the Banach space a recent theorem of Yu. A. Rozanov and a certain earlier result of R. Payen. It also reveals the connection between their works on the factorization problem.References
- S. A. Čobanjan, Regularity of stationary processes with values in a Banach space and factorization of operator-valued functions, Sakharth. SSR Mecn. Akad. Moambe 61 (1971), 29–32 (Russian, with Georgian and English summaries). MR 0290450
- R. G. Douglas, On factoring positive operator functions, J. Math. Mech. 16 (1966), 119–126. MR 0209887, DOI 10.1512/iumj.1967.16.16007
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- A. G. Miamee and H. Salehi, Factorization of positive operator valued functions on a Banach space, Indiana Univ. Math. J. 24 (1974/75), 103–113. MR 350478, DOI 10.1512/iumj.1974.24.24008
- R. Payen, Fonctions aléatoires du second ordre à valeurs dans un espace de Hilbert, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 323–396 (French). MR 0231438
- Yu. A. Rozanov, Some approximation problems in the theory of stationary processes, J. Multivariate Anal. 2 (1972), 135–144. MR 305467, DOI 10.1016/0047-259X(72)90022-X
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 43-50
- MSC: Primary 60G10; Secondary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1974-0348830-3
- MathSciNet review: 0348830