On the homology of finite cyclic coverings of higher-dimensional links
HTML articles powered by AMS MathViewer
- by D. W. Sumners
- Proc. Amer. Math. Soc. 46 (1974), 143-149
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350747-5
- PDF | Request permission
Abstract:
We produce an explicit formula for the betti numbers of the $k$-fold branched cyclic covering of a link, in terms of complex $k$th roots of unity which are also roots of the polynomial invariants of the link. More information is obtained when $k$ is a prime power.References
- A. H. Durfee, Branched cyclic covers and the characteristic polynomial of the local monodromy of plane algebraic curves (preprint).
- Lebrecht Goeritz, Die Betti’schen Zahlen Der Zyklischen Uberlagerungsraume Der Knotenaussenraume, Amer. J. Math. 56 (1934), no. 1-4, 194–198 (French). MR 1507011, DOI 10.2307/2370923
- Fujitsugu Hosokawa and Shin’ichi Kinoshita, On the homology group of branched cyclic covering spaces of links, Osaka Math. J. 12 (1960), 331–355. MR 125579
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
- Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc. 163 (1972), 101–121. MR 284999, DOI 10.1090/S0002-9947-1972-0284999-X B. L. van der Waerden, Moderne algebra. Vol. I, Springer, Berlin, 1930; English transl., Ungar, New York, 1949. MR 10, 587.
- J. M. Woods, Some criteria for finite and infinite monodromy of plane algebraic curves, Invent. Math. 26 (1974), 179–185. MR 348144, DOI 10.1007/BF01418947
- Oscar Zariski, On the Topology of Algebroid Singularities, Amer. J. Math. 54 (1932), no. 3, 453–465. MR 1507926, DOI 10.2307/2370887
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 143-149
- MSC: Primary 57C45
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350747-5
- MathSciNet review: 0350747