Note on a family of Volterra equations
HTML articles powered by AMS MathViewer
- by Kenneth B. Hannsgen
- Proc. Amer. Math. Soc. 46 (1974), 239-243
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350338-6
- PDF | Request permission
Abstract:
We prove that the solutions of a certain family of Volterra integrodifferential equations are uniformly bounded. We use this result to determine the asymptotic behavior of the solution of a Volterra equation in Hilbert space.References
- Constantine M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations 7 (1970), 554–569. MR 259670, DOI 10.1016/0022-0396(70)90101-4
- Avner Friedman, Monotonicity of solutions of Volterra integral equations in Banach space, Trans. Amer. Math. Soc. 138 (1969), 129–148. MR 242024, DOI 10.1090/S0002-9947-1969-0242024-0
- Avner Friedman and Marvin Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc. 126 (1967), 131–179. MR 206754, DOI 10.1090/S0002-9947-1967-0206754-7
- Kenneth B. Hannsgen, Indirect abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc. 142 (1969), 539–555. MR 246058, DOI 10.1090/S0002-9947-1969-0246058-1
- Kenneth B. Hannsgen, A Volterra equation with parameter, SIAM J. Math. Anal. 4 (1973), 22–30. MR 342969, DOI 10.1137/0504004
- Kenneth B. Hannsgen, A Volterra equation in Hilbert space, SIAM J. Math. Anal. 5 (1974), 412–416. MR 342970, DOI 10.1137/0505043
- Kenneth B. Hannsgen, A linear Volterra equation in Hilbert space, SIAM J. Math. Anal. 5 (1974), 927–940. MR 361660, DOI 10.1137/0505090
- R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1–37. MR 293355, DOI 10.1090/S0002-9947-1972-0293355-X
- Daniel F. Shea and Stephen Wainger, Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97 (1975), 312–343. MR 372521, DOI 10.2307/2373715
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 239-243
- MSC: Primary 45D05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350338-6
- MathSciNet review: 0350338