Lebesgue measure is a representing measure
HTML articles powered by AMS MathViewer
- by S. J. Sidney
- Proc. Amer. Math. Soc. 46 (1974), 214-216
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350428-8
- PDF | Request permission
Abstract:
Lebesgue measure on the unit interval $I$ is multiplicative on some maximal Dirichlet algebra on $I$. Related results are obtained.References
- Andrew Browder and John Wermer, Some algebras of functions on an arc, J. Math. Mech. 12 (1963), 119–130. MR 0144223
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
- John Wermer, Polynomial approximation on an arc in $C^3$, Ann. of Math. (2) 62 (1955), 269–270. MR 0072260, DOI 10.2307/1969680
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 214-216
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350428-8
- MathSciNet review: 0350428