A ZERO SET FOR $A(U^2)$

CARL STEPHEN DAVIS

ABSTRACT. A zero set for $A(U^2)$ is constructed using a strictly increasing function on $[0, 1]$ with a derivative that is zero almost everywhere.

1. We let C denote the complex numbers, $U = \{z \in C: |z| < 1\}$, $T = \{w \in C: |w| = 1\}$, $U^2 = U \times U$, and $T^2 = T \times T$. $A(U^2)$ consists of all f analytic on U^2 and continuous on the closure, $\overline{U^2}$ (a similar definition for $A(U)$).

A compact subset $K \subset T^2$ is a zero set for $A(U^2)$ if there exists $f \in A(U^2)$ such that $K = \{z \in \overline{U^2}: f(z) = 0\}$. A compact subset $K \subset T^2$ is an interpolation set for $A(U^2)$ if for any $g \in C(K)$ (continuous functions on K) there exists $f \in A(U^2)$ such that $f = g$ on K. A compact subset $K \subset T^2$ is a null set for $A(U^2)$ if for any complex Borel measure μ on T^2 such that $\mu 1 A(U^2)$ (i.e., $\int f d\mu = 0$ for all $f \in A(U^2)$), then $|\mu|(K) = 0$. We have similar definitions for $A(U)$ and compact subsets of T.

It is shown in [1] that the three properties above for compact subsets of T^2 (or T) are equivalent. A consequence of the F. and M. Riesz theorem is that $K \subset T$ is a null set for $A(U)$ if and only if $m(K) = 0$, where m is normalized Lebesgue measure on T.

We define $\phi_1: [0, 1] \rightarrow T$ by $\phi_1(x) = \exp ix$ and $\phi_2: [0, 1] \times [0, 1] \rightarrow T^2$ by $\phi_2((x_1, x_2)) = (\phi_1(x_1), \phi_1(x_2))$. In the following theorem we assume that $J \subset [0, 1]$, $m(J) > 0$, f is analytic in an open neighborhood of J in C, f is real valued and strictly increasing on J, and $f(J) \subset [0, 1]$. A consequence of 6.3.4 in [1] is the following.

Theorem 1. With f and J as above, let $\psi(x) = (x, f(x))$. Then $\phi_2(\psi(J))$ is not a zero set for $A(U^2)$.

In [1] it is mentioned that the necessity of the analytic condition on f is an open problem. In this note it is shown that "analytic" cannot be replaced by "continuous". W. Rudin has informed me that L. Carleson (unpublished) has shown that if f is 3 times continuously differentiable, then the conclusion of the theorem holds for J an interval.

Received by the editors July 25, 1973 and, in revised form, October 25, 1973.

2. For \(i = 1, 2 \) we define \(\pi_i : [0, 1] \times [0, 1] \to T \) by \(\pi_i((x_1, x_2)) = \phi_i(x_i) \).

Theorem 2. Suppose that \(f : [0, 1] \to [0, 1] \) is strictly increasing and such that \(X = \{(x, f(x)) : x \in [0, 1]\} = A_1 \cup A_2 \) where \(m(\pi_i(A_i)) = 0 \) for \(i = 1 \) and \(2 \). Then \(|\mu|(\phi_2(X)) = 0 \) for any \(\mu \perp A(U^2) \).

Proof. Let \(K \subset \phi_2(A_1) \) be compact. Define \(\tilde{K} = \phi_2^{-1}(K) \cap A_1 \). Since \(m(\pi_1(\tilde{K})) = 0 \), \(\pi_1(\tilde{K}) \) is an interpolation set for \(A(U) \). Suppose that \(g \in C(K) \). Since \(G \) defined by \(G(e^{ix_1}) = g((e^{ix_1}, e^{ix_2})) \), where \((e^{ix_1}, e^{ix_2}) \) is the unique element of \(K \) having \(e^{ix_1} \) as its first component, is in \(C(\pi_1(\tilde{K})) \) and \(\pi_1(\tilde{K}) \) is an interpolation set for \(A(U) \), there is an \(H \in A(U) \) such that \(H = G \) on \(\pi_1(\tilde{K}) \). Define \(h \in A(U^2) \) by \(h(z_1, z_2) = H(z_1) \). Then \(h = g \) on \(K \). Thus \(K \) is an interpolation set for \(A(U^2) \). Thus if \(\mu \perp A(U^2) \), \(|\mu|(K) = 0 \). Hence \(|\tilde{\mu}|(\phi_2(A_1)) = 0 \) (where \(\tilde{\mu} \) is the completion of \(\mu \)). Similarly \(|\tilde{\mu}|(\phi_2(A_2)) = 0 \), and hence \(|\mu|(\phi_2(X)) = 0 \).

To show that continuity is not sufficient in Theorem 1, we apply Theorem 2 to a strictly increasing continuous \(f \) such that \(f'(x) = 0 \) for almost all \(x \) (\(dm \)). We choose \(A_2 = \{(x, f(x)) : f'(x) = 0\} \) and \(A_1 \) the remainder of the graph of \(f \). The equivalence between null sets and zero sets yields the desired result.

REFERENCE

MR 41 #501.