Characterization of the flip operator
Author:
H. A. Seid
Journal:
Proc. Amer. Math. Soc. 46 (1974), 253-258
MSC:
Primary 47B37
DOI:
https://doi.org/10.1090/S0002-9939-1974-0350493-8
MathSciNet review:
0350493
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The flip operator $F$ on ${L_p}([0,1])$, defined by $F(f)(t) = f(1 - t)$, for $f$ in ${L_p}([0,1])$ is characterized up to isometric transformation by means of its induced $\sigma$-isomorphism on the Borel sets of $[0,1]$.
- Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 105017
- H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555 H. A. Seid, Cyclic multiplication operators on ${L_p}$-spaces, Pacific J. Math. (to appear).
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37
Retrieve articles in all journals with MSC: 47B37
Additional Information
Article copyright:
© Copyright 1974
American Mathematical Society