On a sublattice of the lattice of normal Fitting classes
HTML articles powered by AMS MathViewer
- by A. R. Makan
- Proc. Amer. Math. Soc. 46 (1974), 199-204
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352251-7
- PDF | Request permission
Abstract:
Let ${\mathbf {L}}$ be the set of all Fitting classes $\mathfrak {F}$ with the following two properties: (i) $\mathfrak {F} \supseteq \mathfrak {N}$, the class of all finite nilpotent groups, and (ii) every $\mathfrak {F}$-avoided, complemented chief factor of any finite soluble group $G$ is partially $\mathfrak {F}$-complemented in $G$. It is shown that ${\mathbf {L}}$ is a complete sublattice of the complete lattice ${\mathbf {N}}$ of all nontrivial normal Fitting classes, and, moreover, it is lattice isomorphic to the subgroup lattice of the Frattini factor group of a certain abelian torsion group due to H. Lausch.References
- J. C. Beidleman and A. R. Makan, On normal Fischer classes, Bull. London Math. Soc. 5 (1973), 100–102. MR 318296, DOI 10.1112/blms/5.1.100
- Dieter Blessenohl and Wolfgang Gaschütz, Über normale Schunck- und Fittingklassen, Math. Z. 118 (1970), 1–8 (German). MR 277611, DOI 10.1007/BF01109888
- B. Fischer, W. Gaschütz, and B. Hartley, Injektoren endlicher auflösbarer Gruppen, Math. Z. 102 (1967), 337–339 (German). MR 223456, DOI 10.1007/BF01111070
- L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783
- B. Hartley, On Fischer’s dualization of formation theory, Proc. London Math. Soc. (3) 19 (1969), 193–207. MR 244381, DOI 10.1112/plms/s3-19.2.193
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Hans Lausch, On normal Fitting classes, Math. Z. 130 (1973), 67–72. MR 393218, DOI 10.1007/BF01178977
- A. R. Makan, On a relation between injectors and certain complemented chief factors of finite soluble groups, J. Austral. Math. Soc. 17 (1974), 385–388. Collection of articles dedicated to the memory of Hanna Neumann, VIII. MR 0374260 —, Fitting classes with the wreath product property are normal, J. London Math. Soc. (to appear).
- B. H. Neumann, Twisted wreath products of groups, Arch. Math. (Basel) 14 (1963), 1–6. MR 147525, DOI 10.1007/BF01234910
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 199-204
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352251-7
- MathSciNet review: 0352251