An inequality for analytic functions
HTML articles powered by AMS MathViewer
- by Herbert Kamowitz
- Proc. Amer. Math. Soc. 46 (1974), 234-238
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352471-1
- PDF | Request permission
Abstract:
If $F$ denotes the boundary value of a function $f \in {H^p}, 1 \leq p \leq \infty$, the infimum of the measure of $\{ \theta |\;|F(\theta )| > A\}$ for given $A, 0 < A < |f(0)|, ||f|{|_{{H^p}}} = 1$, is determined.References
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 234-238
- MSC: Primary 30A78
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352471-1
- MathSciNet review: 0352471