Discrete phenomena in uniqueness in the Cauchy problem
HTML articles powered by AMS MathViewer
- by François Trèves
- Proc. Amer. Math. Soc. 46 (1974), 229-233
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352679-5
- PDF | Request permission
Abstract:
The concatenation method, recently applied to the study of solvability and hypoellipticity of linear partial differential equations with double characteristics, is used to show that uniqueness in the Cauchy problem, for certain degenerate hyperbolic equations, depends on whether the lower order terms (precisely, the subprincipal part) assume or not certain values belonging to a sequence of complex numbers.References
- Louis Boutet de Monvel and François Trèves, On a class of pseudodifferential operators with double characteristics, Invent. Math. 24 (1974), 1–34. MR 353064, DOI 10.1007/BF01418785
- Louis Boutet de Monvel and François Trèves, On a class of systems of pseudodifferential equations with double characteristics, Comm. Pure Appl. Math. 27 (1974), 59–89. MR 350232, DOI 10.1002/cpa.3160270105
- Antonio Gilioli and François Trèves, An example in the solvability theory of linear PDE’s, Amer. J. Math. 96 (1974), 367–385. MR 355285, DOI 10.2307/2373639
- V. V. Grušin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold, Mat. Sb. (N.S.) 84 (126) (1971), 163–195 (Russian). MR 0283630
- Johannes Sjöstrand, Une classe d’opérateurs pseudodifférentiels à caractéristiques multiples, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A817–A819 (French). MR 339295
- Johannes Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85–130. MR 352749, DOI 10.1007/BF02384749
- François Trèves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Mathematics and its Applications, Vol. 6, Gordon and Breach Science Publishers, New York-London-Paris, 1966. MR 0224958
- François Trèves, A link between solvability of pseudodifferential equations and uniqueness in the Cauchy problem, Amer. J. Math. 94 (1972), 267–288. MR 308626, DOI 10.2307/2373605
- François Trèves, Concatenations of second-order evolution equations applied to local solvability and hypoellipticity, Comm. Pure Appl. Math. 26 (1973), 201–250. MR 340804, DOI 10.1002/cpa.3160260206
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 229-233
- MSC: Primary 35G10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352679-5
- MathSciNet review: 0352679