Hereditary completeness and quasi-reflexivity
HTML articles powered by AMS MathViewer
- by T. K. Mukherjee
- Proc. Amer. Math. Soc. 46 (1974), 285-286
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352944-1
- PDF | Request permission
Abstract:
In this note, we prove that the countable direct sum of quasi-reflexive Banach spaces is hereditarily complete and hence the separated countable inductive limit of quasi-reflexive Banach spaces is complete.References
- Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906–911. MR 90020, DOI 10.1090/S0002-9939-1957-0090020-6
- Alexandre Grothendieck, Sur la complétion du dual d’un espace vectoriel localement convexe, C. R. Acad. Sci. Paris 230 (1950), 605–606 (French). MR 40573 G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
- Stephen Saxon and Mark Levin, Every countable-codimensional subspace of a barrelled space is barrelled, Proc. Amer. Math. Soc. 29 (1971), 91–96. MR 280972, DOI 10.1090/S0002-9939-1971-0280972-0
- Manuel Valdivia, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 2, 3–13 (English, with French summary). MR 333643
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 285-286
- MSC: Primary 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0352944-1
- MathSciNet review: 0352944