A NOTE ON EXTREME ELEMENTS IN $A_0(K, E)$

M. SHARIR

ABSTRACT. We give a short and simple proof to a theorem of Fakhouri, characterizing extreme elements in the unit ball of $A_0(K, E)$.

Let V be a Banach space whose dual is an L^1-space. Denote by K the unit ball of V^* equipped with the w^*-topology. Let E be a Banach space. $S(E)$ will denote its closed unit ball and $\text{ext } S(E)$ the set of extreme points in $S(E)$. $A_0(K, E)$ will be the Banach space of all the symmetric affine functions from K into E, continuous in the w^*-topology on K, and in the norm topology on E. Fakhouri has shown in [1] that if E has certain properties, then $f \in A_0(K, E)$ is extreme in $S(A_0(K, E))$ if and only if $f(\text{ext } K) \subseteq \text{ext } S(E)$. This result bears immediate characterization of extreme compact operators (if $E = F^*$, then $A_0(K, E)$ is precisely the space of compact operators from F into V), and generalizes similar results of Lazar [2]. By observing a simple property of spaces having the 3.2.1.P. (cf. [4] for a proper definition), and by using a selection theorem of Lazar and Lindenstrauss [3], we are able to prove Fakhouri's result in a very simple and direct way.

Lemma. Let E be a Banach space having the 3.2.1.P. and let $x, y \in S(E)$, $a \in E$, such that $x \pm a \in S(E)$. Then there exists an element $b \in E$, such that $y \pm b \in S(E)$, and $\|b - a\| \leq \|y - x\|$.

Proof. Define three closed balls in E:

- $S_1 = \{b \in E; \|b - y\| \leq 1\}$,
- $S_2 = \{b \in E; \|b + y\| \leq 1\}$,
- $S_3 = \{b \in E; \|b - a\| \leq \|y - x\|\}$.

These balls intersect in pairs, for $0 \in S_1 \cap S_2$, $y + a - x \in S_1 \cap S_3$ and

Received by the editors August 15, 1973.

1 This paper is a part of the author's Ph.D. Thesis, prepared at Tel Aviv University, under the supervision of Dr. A. J. Lazar.
EXTREME ELEMENTS IN $A_0(K, E)$

- $y + a + x \in S_2 \cap S_3$. Hence they have a nonempty intersection, and any $b \in S_1 \cap S_2 \cap S_3$ has all the desired properties.

Theorem. Let the scalars be real, and let E be a Banach space with the 3.2.I.P. and let K be as above. Then an element ϕ of $A_0(K, E)$ is extreme in the unit ball of this space if and only if $\phi(\text{ext } K) \subset \text{ext } S(E)$.

Proof. Since one direction is immediate, assume ϕ to be extreme. We make use of a selection theorem of Lazar and Lindenstrauss [3]. Define a set-valued mapping $\Sigma: K \to 2^{S(E)}$ by

$$\Sigma(\mu) = \{x \in S(E); \|\phi(\mu) + x\| \leq 1\}, \quad \mu \in K.$$

Now, for each $\mu \in K$, $\Sigma(\mu)$ is a norm-closed convex nonvoid subset of $S(E)$. Also $\Sigma(-\mu) = \Sigma(\mu)$ for each $\mu \in K$ (thus Σ is symmetric), and for each $\mu_1, \mu_2 \in K, 0 \leq \alpha \leq 1$, we have

$$\alpha \Sigma(\mu_1) + (1 - \alpha)\Sigma(\mu_2) \subset \Sigma(\alpha\mu_1 + (1 - \alpha)\mu_2)$$

(thus Σ is convex). Σ is also lower semicontinuous (in the sense of Michael [5]) with the w^*-topology on K and the norm-topology on $S(E)$: Let $\mu \in K$, $x \in \Sigma(\mu)$, and $\mu_\alpha \overset{w^*}{\to} \mu$ in K. We have to show the existence of $x_\alpha \in \Sigma(\mu_\alpha)$, for each α, such that $x_\alpha \to x$ in norm. But this is immediate since $\phi(\mu_\alpha) \to \phi(\mu)$ in norm, and, for each α, the Lemma provides us with a $x_\alpha \in E$ such that $\|\phi(\mu_\alpha) + x_\alpha\| \leq 1$ (hence $x_\alpha \in \Sigma(\mu_\alpha)$) and $\|x_\alpha - x\| \leq \|\phi(\mu_\alpha) - \phi(\mu)\|$. Hence the lower semicontinuity of Σ is obvious. Now, assume that $\phi(\text{ext } K) \not\subset \text{ext } S(E)$. Hence, there is a $\mu_0 \in \text{ext } K$ and a nonzero element x_0 of $\Sigma(\mu_0)$. Now, $f(\alpha\mu_0) = \alpha x_0, \alpha \in [-1, 1]$, is a w^*-continuous affine symmetric selection of Σ restricted to $\text{conv}(\{\mu_0\}U - \{\mu_0\})$, for which $\{\mu_0\}$ is obviously essentially closed (cf. [3] for proper definitions). Hence, there is a w^*-continuous affine symmetric selection $\psi \in A_0(K, E)$ of Σ, such that $\psi(\mu_0) = x_0 \neq 0$. Hence, for each $\mu \in K$ one has $\|\phi(\mu) \pm \psi(\mu)\| \leq 1$ and therefore $\|\phi \pm \psi\| \leq 1$. Since ϕ is extreme we must have $\psi = 0$, a contradiction which completes the proof.

Remark. The estimate $\|x_\alpha - x\| \leq \|\phi(\mu_\alpha) - \phi(\mu)\|$, and therefore also the requirement that E will have the 3.2.I.P., is apparently too strong for the proof of the Theorem and weaker assumptions will do as well.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL