Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subrings of Noetherian rings


Authors: Edward Formanek and Arun Vinayak Jategaonkar
Journal: Proc. Amer. Math. Soc. 46 (1974), 181-186
MSC: Primary 16A46
DOI: https://doi.org/10.1090/S0002-9939-1974-0414625-5
MathSciNet review: 0414625
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S$ be a subring of a ring $R$ such that $R$ is a finitely generated right $S$-module. Clearly, if $S$ is a right Noetherian ring then so is $R$. Generalizing a result of P. M. Eakin, we show that if $R$ is right Noetherian and $S$ is commutative then $S$ is Noetherian. We also show that if ${R_S}$ has a finite generating set $\{ {u_1}, \cdots ,{u_m}\}$ such that ${u_i}S = S{u_i}$ for $1 \leq i \leq m$, then a right $R$-module is Noetherian, Artinian or semisimple iff it is respectively so as a right $S$-module. This yields a result of Clifford on group algebras.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A46

Retrieve articles in all journals with MSC: 16A46


Additional Information

Keywords: Commutative Noetherian rings, noncommutative Noetherian rings, P. I. rings, Eakin’s theorem, Clifford’s theorem on group algebras
Article copyright: © Copyright 1974 American Mathematical Society