Subrings of Noetherian rings
HTML articles powered by AMS MathViewer
- by Edward Formanek and Arun Vinayak Jategaonkar
- Proc. Amer. Math. Soc. 46 (1974), 181-186
- DOI: https://doi.org/10.1090/S0002-9939-1974-0414625-5
- PDF | Request permission
Abstract:
Let $S$ be a subring of a ring $R$ such that $R$ is a finitely generated right $S$-module. Clearly, if $S$ is a right Noetherian ring then so is $R$. Generalizing a result of P. M. Eakin, we show that if $R$ is right Noetherian and $S$ is commutative then $S$ is Noetherian. We also show that if ${R_S}$ has a finite generating set $\{ {u_1}, \cdots ,{u_m}\}$ such that ${u_i}S = S{u_i}$ for $1 \leq i \leq m$, then a right $R$-module is Noetherian, Artinian or semisimple iff it is respectively so as a right $S$-module. This yields a result of Clifford on group algebras.References
- Jan-Erik Björk, Noetherian and Artinian chain conditions of associative rings, Arch. Math. (Basel) 24 (1973), 366–378. MR 344286, DOI 10.1007/BF01228225
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Paul M. Eakin Jr., The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278–282. MR 225767, DOI 10.1007/BF01350720
- David Eisenbud, Subrings of Artinian and Noetherian rings, Math. Ann. 185 (1970), 247–249. MR 262275, DOI 10.1007/BF01350264
- Edward Formanek, Faithful Noetherian modules, Proc. Amer. Math. Soc. 41 (1973), 381–383. MR 379477, DOI 10.1090/S0002-9939-1973-0379477-X
- Edward Formanek, Noetherian $\textrm {PI}$-rings, Comm. Algebra 1 (1974), 79–86. MR 357489, DOI 10.1080/00927877408548610
- Alfred W. Goldie, The structure of Noetherian rings, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp. 213–321. MR 0393118
- Robert Gordon (ed.), Ring theory, Academic Press, New York-London, 1972. MR 0330129
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Masayoshi Nagata, A type of subrings of a noetherian ring, J. Math. Kyoto Univ. 8 (1968), 465–467. MR 236162, DOI 10.1215/kjm/1250524062
- Claudio Procesi and Lance Small, Endomorphism rings of modules over $\textrm {PI}$-algebras, Math. Z. 106 (1968), 178–180. MR 233846, DOI 10.1007/BF01110128
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 181-186
- MSC: Primary 16A46
- DOI: https://doi.org/10.1090/S0002-9939-1974-0414625-5
- MathSciNet review: 0414625