ON THE UNIFORM ERGODIC THEOREM. II

MICHAEL LIN

ABSTRACT. Let \(|T_t|\) be a strongly continuous semigroup of bounded linear operators on a Banach space \(X\), satisfying \(\lim_{t \to \infty} \|T_t\|/t = 0\). We prove the equivalence of the following conditions: (1) \(t^{-1} \int_0^t T_s \, ds\) converges uniformly as \(t \to \infty\). (2) The infinitesimal generator \(A\) has closed range. (3) \(\lim_{\lambda \to 0^+} \lambda R_\lambda\) exists in the uniform operator topology.

In [6] the author has proved that for a bounded linear operator \(T\) on a Banach space \(X\) satisfying \(\|T^n/n\| \to 0\), \(N^{-1} \sum_{n=0}^{N-1} T^n\) converges uniformly if and only if \((I - T)X\) is closed. In this paper we obtain the analogous result for the continuous case, generalizing some results of Hille and Phillips [5, Theorem 18.8.4] without using the operational calculus devised by Hille. Abel convergence in the discrete case is treated in the appendix.

Theorem. Let \(|T_t|_{t \geq 0}\) be a strongly continuous semigroup of bounded linear operators with \(T_0 = I\), satisfying \(\|T_t/t\| \to 0\). Let \(A\) be the infinitesimal generator of \(|T_t|\) and let \(R_\lambda x = \int_0^\infty e^{-\lambda t} T_t x \, dt\) be the resolvent family \((\lambda > 0)\). Then the following conditions are equivalent:

1. There exists a bounded linear operator \(E\) such that \(\|t^{-1} \int_0^t T_s \, ds - E\|_{t \to \infty} \to 0\).
2. \(A\) has closed range.
3. \(N^{-1} \sum_{n=0}^{N-1} R^n\) converges uniformly.
4. There exists a projection \(E\) on \(\{x: T_t x = x, \forall t > 0\}\) such that \(\lim_{\lambda \to 0^+} \|\lambda R_\lambda - E\| = 0\).

Lemma 1. Under the assumptions of the theorem, \(\lim_{n \to \infty} \|(\lambda R_\lambda)^n\|/n = 0\) for every \(\lambda > 0\).

Proof. If \(t\) is large, \(\|T_t\| \leq \epsilon t\) and \(w_0 = \lim_{t \to \infty} \log \|T_t\|/t \leq \)

Received by the editors August 16, 1973.
AMS (MOS) subject classifications (1970). Primary 47A35, 47D05.
Key words and phrases. Ergodic theorem, ergodicity of semigroups, Abel ergodicity.

1 Research supported by NSF grant GP-34118.

Copyright © 1974, American Mathematical Society

217
lim \(t^{-1}(\log t + \log \epsilon) = 0 \). In [2, Lemma VIII.1.12] it is shown that for
\(\lambda > 0 \geq w_0 \),
\[
R_\lambda^n x = (n - 1)!^{-1} \int_0^\infty e^{-\lambda t} t^{n-1} T_t x \, dt.
\]
By induction and integration by parts we have \((A*/w!) / 0^0 e^{-\lambda t} = 1/A\).

Fix \(\epsilon > 0 \). Then \(\|T_t\| \leq \epsilon t \) for \(t > t_0(\epsilon) \). Since \(\|T_t x\| \) is continuous on \([0, t_0]\), it is bounded, and by the principle of uniform boundedness \(\|T_t\| \leq K \) for \(0 \leq t \leq t_0 \). Thus
\[
\frac{\|\lambda R_\lambda^n\|^n}{n!} \leq \frac{\lambda}{e^\lambda} K \int_0^{t_0} e^{-\lambda t} (t-1) dt + \frac{\lambda}{e^\lambda} \int_{t_0}^\infty e^{-\lambda t} t^{n-1} t dt \leq \frac{K \epsilon}{n + \lambda}
\]
and \(\limsup_n \|\lambda R_\lambda^n\|^n/n \leq \epsilon/e^\lambda \). Let \(\epsilon \to 0 \) to conclude the proof.

Lemma 2. If \(\mu R_\mu x = x \) for some \(\mu > 0 \), then \(T_t x = x \) for every \(t > 0 \).

Proof. By the resolvent equation \((R_\lambda - R_\mu)x = (\mu - \lambda)R_\mu R_\lambda x\).
\[
R_\lambda x - R_\mu x = R_\lambda \mu x - \lambda R_\mu R_\lambda x = R_\lambda x - \lambda R_\lambda R_\mu x.
\]
Thus
\[
(\lambda - \lambda R_\lambda)x = \mu(\lambda - \lambda R_\lambda)R_\mu x = 0,
\]
and \(\lambda R_\lambda x = x \) for every \(\lambda > 0 \). The lemma follows from the inversion formula (11.7.2) in [5].

Remark. If \(\sup_{t \geq 0} \|T_t\| \leq M \), we may assume \(M = 1 \). Then Lemma 1 is trivial, and Lemma 2 is proved by Falkowitz [3] without using the inversion formula.

Proof of the Theorem. We denote by \(R(A) \) the range of \(A \) and by \(Y \) the closure of \(R(A) \).

(2) \(\Rightarrow \) (3). For \(\lambda > 0 \) \((\lambda I - A)R_\lambda = I \) and for \(x \in D(A) \), \(R_\lambda (\lambda I - A)x = x \) [2, Lemma VIII.1.7]. Hence \(\lambda R_\lambda = I + AR_\lambda \) and \((\lambda R_\lambda - I)x \subset R(A) \). By (2) \(Y = R(A) \), so that for \(y \in Y \) there is an \(x \in D(A) \) with \(Ax = y \), and
\[
x = R_\lambda (\lambda I - A)x = \lambda R_\lambda x - \lambda R_\lambda y \quad \text{or} \quad R_\lambda y = (\lambda R_\lambda - I)x.
\]
Thus
\[
y = (\lambda I - A)R_\lambda y = (\lambda I - A)(\lambda R_\lambda - I)x = (\lambda R_\lambda - I)(\lambda I - A)x
\]
and \(Y = (\lambda R_\lambda - I)X \). Thus by applying the uniform ergodic theorem of [6] to the operator \(\lambda R_\lambda \) we obtain (3), since \(\|\lambda R_\lambda^n\|^n/n \to 0 \) by Lemma 1.

(2) \(\Rightarrow \) (1). For \(x \in D(A) \), \(AT_t x = T_t Ax \) and therefore \(T_t Y \subset Y \). The generator \(A_t \) of the restriction of \(\{T_t\} \) to \(Y \) will be the restriction of \(A \) to \(Y \cap D(A) \). It is shown above that (2) implies \(Y = (I - \lambda R_\lambda)X \), and the uniform ergodic theorem shows that \(I - \lambda R_\lambda \) is invertible on \(Y \). If \(A_t Y = 0 \)
for \(y \in Y \cap D(A) \), then
\[
y = R_\lambda(\lambda I - A)y = \lambda R_\lambda y \quad \text{or} \quad (I - \lambda R_\lambda)y = 0,
\]
and \(y = 0 \). Thus \(A_1 \) is one-to-one. On \(Y \) we have, as above, \((I - \lambda R_\lambda)Y \subset R(A_1)\). But from (2) \(\implies \) (3) we have
\[
Y \supset R(A_1) \supset (I - \lambda R_\lambda)Y = (I - \lambda R_\lambda)X = Y = R(A)
\]
and \(R(A_1) = Y \), so \(A_1^{-1} \) is defined for all of \(Y \). \(A_1 \) is closed, therefore \(A_1^{-1} \) is continuous, and by the closed graph theorem \(A_1^{-1} \) is continuous. For \(y \in Y = R(A_1) \) there is an \(x \in D(A) \cap Y \) such that \(Ax = y \) and \(\|x\| \leq \|A_1^{-1}\|y\| \). By [2, Lemma VIII.1.7]
\[
(T - I)x = \int_0^t T_\tau Ax \, d\tau = \int_0^t T_\tau y \, d\tau
\]
and
\[
\|t^{-1}\int_0^t T_\tau y \, d\tau\| \leq \|A_1^{-1}\|((\|T\| + 1)t^{-1}\|y\|). \quad \text{Hence on } Y \text{ we have uniform convergence to } 0. \quad \text{But } X = Y \oplus \{x: R_1x = x\} \text{ by the uniform ergodic theorem,}
\]
Lemma 2 then yields that \(X = Y \oplus \{x: T_\tau x = x, \forall \tau > 0\} \), and (1) follows immediately.

(3) \(\implies \) (2). By the uniform ergodic theorem \((I - R_1)X \) is closed. In (2) \(\implies \) (3) we have shown \((I - R_1)X = R(A)\) and \(R(A)\) is closed.

(1) \(\implies \) (2). It follows from (1) that \(E^2 = E \), with \(EX = \{x: T_\tau x = x, \forall \tau \geq 0\} \). As shown above, \(T_\tau Y \subset Y \). For \(x \in D(A) \), we have by [2, Lemma VIII.1.7] that \((T_\tau - I)x = \int_0^t T_\tau Ax \, d\tau \in Y \). Since \(D(A) \) is dense, we have that \(\text{clm} \bigcup_{\tau \geq 0}(I - T_\tau)X \subset Y \). On the other hand, for \(x \in D(A) \), \(Ax = \lim_{\tau \to 0}b^{-1}(T_\tau - I)x \), so that \(Y \subset \text{clm} \bigcup_{\tau \geq 0}(I - T_\tau)X \) and equality holds. Hence by (1), \(X = EX \oplus Y \) (see [2, VIII.7.2]). Thus by restricting ourselves to \(Y \) we have \(Y = \overline{R(A_1)} \) (where \(A_1 \) is the generator of the restriction, with domain \(D(A) \cap Y \)). Thus we may and do assume \(X = Y \), and \(\|t^{-1}\int_0^t T_\tau ds\| \to 0 \).

Let \(x \in D(A) \) satisfy \(Ax = 0 \). Then \(x = R_1(I - A)x = R_1x \) and by Lemma 2 \(T_\tau x = x \) for every \(\tau \geq 0 \). Since \(X = Y, x = 0 \) and \(A \) is one-to-one, with \(A^{-1} \) defined on \(R(A) \). For fixed \(t \) large enough, \(\|t^{-1}\int_0^t T_\tau ds\| < 1 \) and \(I - t^{-1}\int_0^t T_\tau ds \) is invertible, and so is \(\int_0^t (T_\tau - I) \, d\tau \). For \(y \in R(A) \) take \(x \in D(A) \) with \(Ax = y \). Then
\[
\int_0^t (T_\tau - I)x \, ds = \int_0^t \left(\int_0^s T_\tau Ax \, d\tau \right) ds = \int_0^t \left(\int_0^s T_\tau y \, d\tau \right) ds
\]
and
\[
\|x\| = \|A^{-1}y\| \leq \left\| \left(\int_0^t (T_\tau - I) ds \right)^{-1} \right\| \left\| \int_0^t \left(\int_0^s T_\tau y \, d\tau \right) ds \right\| \leq K \|y\|.
\]
Hence A^{-1} is continuous with dense domain (in $X = Y$). Since A is closed, A^{-1} is defined on all of Y, and $Y = R(A) = R(A)$. Again we may and do assume $X = Y$, and A^{-1} is continuous.

Let $0 < \lambda \leq \delta < 1/\|A^{-1}\|$. For $y \in Y$
\[\|\lambda R_{\lambda}y\| = \|\lambda R_{\lambda}AA^{-1}y\| \leq \|\lambda (\lambda R_{\lambda} - I)\| \|A^{-1}\| \|y\|. \]

Hence for $0 < \lambda \leq \delta$ we have,
\[\|\lambda R_{\lambda}\| \leq (1 + \|\lambda R_{\lambda}\|) \delta \|A^{-1}\|, \quad \text{or} \quad \|\lambda R_{\lambda}\| \leq \delta \|A^{-1}\|/\|I - \delta A^{-1}\| \equiv M. \]

Now we have
\[\|\lambda R_{\lambda}\| \leq \|\lambda (\lambda R_{\lambda} - I)\| \|A^{-1}\| \leq \lambda (1 + M) \|A^{-1}\| \rightarrow \lambda \rightarrow 0^+ 0. \]

(4) \Rightarrow (2). If $y = \lambda x$ for $x \in D(A)$, then $\lambda R_{\lambda}y = \lambda R_{\lambda}Ax = \lambda (\lambda R_{\lambda} - I)x \rightarrow 0$. Restricting ourselves to Y we have $\|\lambda R_{\lambda}\|_Y \rightarrow 0$. But on Y we have for $\lambda > 0$ small enough that $I - \lambda R_{\lambda}$ is invertible, hence
\[Y = (I - \lambda R_{\lambda})Y \subset (I - \lambda R_{\lambda})X = R(A) \]
(see (2) \Rightarrow (1) for last equality) and $R(A) = Y$.

Remark. [5, Theorem 18.8.4] treats more general semigroups, but is only concerned with Abel convergence, and does not include the sufficiency of $R(A)$ being closed. The method presented here is different, not using the operational calculus and spectral theory used in [5].

Corollary 1. Let $\{T_t\}$ be as above. The following two conditions are equivalent:

1. \[t^{-1} \int_0^t T_r \, dr \text{ converges uniformly as } t \rightarrow \infty. \]

2. \[\text{There is a } \delta > 0 \text{ such that } \sup_{0 < \lambda \leq \delta} \|R_{\lambda}y\| < \infty \text{ for every } y \in R(A). \]

If $\|T_t\| \leq M$ for $t \geq 0$, then the following (sufficient) condition is also equivalent to the previous two:

3. \[\sup_{t \geq 0} \|\int_0^t T_r y \, dr\| < \infty \text{ for every } y \in R(A). \]

Proof. (1) \Rightarrow (2). By the Theorem $R(A)$ is closed. For $y \in R(A)$ we have $x \in D(A)$ with $Ax = y$, and $R_{\lambda}y = R_{\lambda}Ax = x + \lambda R_{\lambda}x$. The proof of (1) \Rightarrow (4) in the Theorem shows that $\sup_{0 < \lambda \leq \delta} \|\lambda R_{\lambda}\| < \infty$, and (2) follows. (In fact, $\sup_{0 < \lambda \leq \delta} \|\lambda R_{\lambda}\| < \infty$ by the computations of Lemma 1, $\sup_{\delta \leq \lambda} \|\lambda R_{\lambda}\| < \infty$.)
(2) \implies (1). We look at the semigroup restricted to \(Y = \overline{R(A)} \), with generator \(A_1 \).

By the principle of uniform boundedness, \(\sup_{0 < t < s} \| R_t \|_Y < \infty \) and therefore \(\lim_{\lambda \to 0} \| \lambda R_\lambda \|_Y = 0 \). By the Theorem, \(Y = R(A_1) \subset R(A) \). Hence \(R(A) \) is closed and (1) follows from the Theorem.

(3) \implies (1) is proved similarly.

If \(\| T_t \| \leq M \) for every \(t \geq 0 \) and we assume (1), then for \(y = Ax \) \((x \in D(A))\) we have, by [2, Lemma VIII.1.7],

\[
\left\| \int_0^t T_r y \, dr \right\| = \left\| \int_0^t T_r Ax \, dr \right\| = \left\| (T_t - I)x \right\| \leq (M + 1) \| x \|.
\]

Since \(R(A) \) is closed, (3) follows.

Corollary 2. Assume \(\| T_t \| \leq M \) for every \(t \geq 0 \). Let \(\nu \) be a probability measure on \([0, \infty)\), \(\nu([0]) < 1 \), and define \(Ux = \int T_t x \, d\nu \). If \(N^{-1} \sum_{n=0}^{N-1} U^n \) converges uniformly, then \(t^{-1} \int_0^t T_r \, dr \) converges uniformly \((\text{as } t \to \infty)\).

Proof. Since \(\| x \| = \sup_{t \geq 0} \| T_t x \| \) is an equivalent norm for \(X \) such that \(\| T_t \| \leq 1 \), we may and do assume \(\| T_t \| \leq 1 \).

Note that \(U \) is well defined in the strong operator topology, by [5, Theorem 3.7.4].

By the discrete uniform ergodic theorem \(X = (I - U)X \oplus \{ x: Ux = x \} \); since \(T_t \) commutes with \(U \), both subspaces are invariant under \(\{ T_t \} \), and we can restrict ourselves to each one. Hence it suffices to treat two cases:

1. \(I - U \) is invertible.
2. \(U = I \).

Case 1. Fix \(\epsilon > 0 \). Let \(\beta > 0 \) be such that \(\nu([0, \beta]) > 1 - \epsilon \). Define \(\nu_\epsilon(C) = \nu(C \cap [0, \beta]) / \nu([0, \beta]) \). Then \(\| \nu_\epsilon - \nu \| \leq 1/(1 - \epsilon) - 1 + \epsilon \). Define \(U_\epsilon x = \int T_t x \, d\nu_\epsilon \). Then

\[
\left\| (I - U) - (I - U_\epsilon) \right\| = \left\| U - U_\epsilon \right\| \leq \| \nu - \nu_\epsilon \| \to 0 \quad \text{as } \epsilon \to 0
\]

and \(I - U_\epsilon \) is also invertible for \(\epsilon \) small enough. Thus we may and do assume that \(\nu \) is supported on a finite interval \([0, \beta]\).

Let \(A \) be the infinitesimal generator of \(\{ T_t \} \). Since \(D(A) \) is dense, for \(y \in X \) there is a sequence \(x_n \in D(A) \) with \(x_n \to (I - U)^{-1} y \). Hence

\[
y = \lim_{n \to \infty} (I - U)x_n = \lim_{n \to \infty} \int (I - T_t)x_n \, d\nu = -\lim_{n \to \infty} \int \left(\int_0^t T_r Ax_n \, dr \right) \, d\nu,
\]

which shows that \(y \in \overline{R(A)} \) \((\text{since } \overline{R(A)} \text{ is invariant under } \{ T_t \})\). Let \(z_n \in D(A) \) satisfy \(Az_n \to y \). Then
\[
\|(I - U)z_n - (I - U)z_m\| \leq \int_0^t \left\{ \int_0^r \|Az_n - Az_m\| \, dr \right\} \, dv
\]
\[
= \int_0^t \|Az_n - Az_m\| \, dv \leq \beta \|Az_n - Az_m\|.
\]
Thus \(\{(I - U)z_n\}\) is a Cauchy sequence, and \(z_n = (I - U)^{-1}(I - U)z_n\) converges (strongly), say to \(z\). Then \(z_n \to z\) and \(Az_n \to y\), and since \(A\) is a closed operator, \(z \in D(A)\) and \(y = Az\). Thus \(X = R(A)\) and by the theorem
\[
\lim_{t \to 0} t^{-1} \int_0^t T_r \, dr = 0.
\]

Case 2. We show first that \(U = I\) implies \(T_{t_0} = I\) for some \(t_0 > 0\). If, for \(t_0 > 0\), \(\alpha = \nu(t_0) > 0\), then for every \(x \in X\) we have \(x = Ux = \alpha T_{t_0} x + (1 - \alpha) \int T_r x \, dv_1\), where \(\nu_1 = (\nu - \alpha \delta_{t_0})/(1 - \alpha)\) with \(\delta_{t_0}\) the Dirac measure at \(t_0\). By [3, Lemma 1], \(T_{t_0} x = x\), and thus \(T_{t_0} = I\). Assume now that \(\nu(\{t\}) = 0\) for \(t > 0\). Let \(F(t) = \nu((- \infty, t])\) be the distribution of \(\nu\). Then \(F(t)\) is continuous at \(t > 0\), and since \(F(0) = \nu(0) < 1\), there is a \(t' > 0\) with \(0 < F(t') = a < 1\). Let \(t_0 = \sup \{t: F(t) = a\}\), and \(F(t_0) = a\) by continuity. Take \(t_0 < t_n \leq t_1\), and let \(a_n = \nu(\{t_0, t_n\})\). Define (since \(1 > a_n > 0\))
\[
\nu_n(C) = \nu(C \cap [t_0, t_n])/a_n \quad \text{and} \quad \mu_n(C) = \{\nu(C) - a_n \nu_n(C)\}/(1 - a_n).
\]
Then \(\nu_n\) and \(\mu_n\) are nonzero probability measures with \(a_n \nu_n + (1 - a_n) \mu_n = \nu\). By [3, Lemma 1] we also have that \(\int T_r x \, dv_n = x\) for every \(x \in X\), so that \(\int T_r \, dv_n = I\). Fix \(x \in X\), \(x^* \in X^*\). Then \(\langle x^*, T_t x \rangle\) is continuous on \([t_0, t_n]\) and there is a point \(t_0 \leq s_n \leq t_n\) such that \(\langle x^*, T_s x \rangle = \int \langle x^*, T_r x \rangle \, dv_n = \langle x^*, x \rangle\). Since also \(\lim s_n = t_0\), the continuity of \(\{T_t\}\) yields \(\langle x^*, T_{t_0} x \rangle = \langle x^*, x \rangle\). Hence \(T_{t_0} = I\). To finish the proof in Case 2, denote \(n = \lfloor t/t_0 \rfloor\). Then for \(t > t_0\) we have (with \(\alpha = t/t_0 - n\))
\[
t^{-1} \int_0^t T_r \, dr = t^{-1} \int_0^{nt_0} T_r \, dr + t^{-1} \int_{nt_0}^t T_r \, dr
\]
\[
= t^{-1} \int_0^{nt_0} T_r \, dr + t^{-1} \int_{nt_0}^t T_r \, dr \to t^{-1} \int_0^{nt_0} T_r \, dr \quad \text{as} \quad t \to t_0^+.
\]

Remarks. (1) The corollary can be applied if \(I - U - Q\) is invertible for some compact operator \(Q\) (see [6]). (2) In the discrete case \(\{T^n\}\) treated in [6] there is a requirement \(\sum_{i=1}^k a_i = 1\). It can be removed by an approxima-
tion argument, as in the proof of Corollary 2. (Also see the example in the appendix.)

Appendix. We show here that if \(\|T^n/n\| \to 0 \), then Abel and Cesàro convergence of \(\{T^n\} \) are equivalent in the uniform operator topology. Hille [4] proved it for the case \(\sup\|T^n\| < \infty \), using a general method which does not apply in the case that \(T \) is not power-bounded. (An extension of Hille's result in the strong operator topology is a consequence of [1, Theorem 1].)

Proposition. Let \(T \) be a linear operator on \(X \) with \(\|T^n/n\| \to 0 \). Then the following conditions are equivalent:

1. \(N^{-1} \sum_{n=0}^{N-1} T^n \) converges in the uniform operator topology.
2. \(\lim_{r \to 1^-} \|(1 - r) \sum_{n=0}^{\infty} r^n T^n - E\| = 0 \) for some operator \(E \).
3. \((I - T)X \) is closed.

Proof. Let \(Y = (I - T)X \), which is invariant under \(T \), and let \(S \) on \(Y \) be the restriction of \(T \).

(1) \(\Rightarrow \) (2). Since this follows from Hille's general results [4], we only sketch a simple proof for the present situation. From (1) we have \(X = Y \oplus \{x: Tx = x\} \), and we have only to show \(\|(1 - r) \sum_{n=0}^{\infty} r^n S^n\| \to 0 \). But by the uniform ergodic theorem, \(I - S \) is invertible on \(Y \). Thus, for \(0 < r < 1 \),

\[
(1 - r) \sum_{n=0}^{\infty} r^n S^n = (1 - r) \sum_{n=0}^{\infty} r^n S^n (I - S) (I - S)^{-1}
\]

\[
\leq \left\{ \left\| (1 - r) \sum_{n=1}^{\infty} (r^n - r^{n-1}) S^n \right\| + (1 - r) \right\} \left\| (I - S)^{-1} \right\|
\]

\[
\leq (1 - r) \left\| (I - S)^{-1} \right\| \left\{ 1 + (1 - r) \sum_{n=1}^{\infty} r^{n-1} \|S^n\| \right\}.
\]

Fix \(\epsilon > 0 \). For \(n > k \), \(\|S^n\|/n < \epsilon \) and

\[
(1 - r)^2 \sum_{n=1}^{\infty} r^{n-1} \|S^n\| \leq (1 - r)^2 \sum_{n=1}^{k} r^{n-1} \|S^n\| + \epsilon (1 - r)^2 \sum_{n=1}^{\infty} r^{n-1} n
\]

\[
= (1 - r)^2 \sum_{n=1}^{k} r^{n-1} \|S^n\| + \epsilon \to \epsilon.
\]

Let \(\epsilon \to 0 \) to conclude (2).

(2) \(\Rightarrow \) (3). We shall show \((I - S)Y = Y \), which implies (3). Hence we restrict ourselves to \(Y \). If \(y = (I - T)x \), then
\[(1 - r) \sum_{n=0}^{\infty} r^n S^ny = (1 - r) \sum_{n=0}^{\infty} r^n(I - T)T^nx\]

\[= (1 - r) \sum_{n=0}^{\infty} r^nT^nx - (1 - r)r^{-1} \sum_{n=0}^{\infty} r^nT^nx + (1 - r)r^{-1}x\]

\[\rightarrow Ex - Ex + 0 = 0.\]

Hence \(\|(1 - r) \sum_{n=0}^{\infty} r^nS^n\| \rightarrow r - 1^{-}.\) Thus for fixed \(0 < r < 1,\) close enough to 1, \(I - (1 - r) \sum_{n=0}^{\infty} r^nS^n\) is invertible. Since \(\sum_{n=0}^{\infty} r^nS^n\) is defined in the uniform operator topology (by virtue of \(\|T^n\|/n \rightarrow 0\)), we have that

\[(1 - r) \sum_{n=1}^{\infty} r^n \left(\sum_{i=0}^{n-1} S^i \right) = (1 - r) \sum_{i=0}^{\infty} \left(\sum_{n=i+1}^{\infty} r^n \right) S^i = \sum_{i=0}^{\infty} r^{i+1}S^i\]

is also defined in the uniform operator topology. But

\[(I - S)\sum_{n=0}^{\infty} r^nS^n = (1 - r) \sum_{n=0}^{\infty} r^n(I - S^n) = \sum_{n=1}^{\infty} r^n \left(\sum_{i=0}^{n-1} S^i \right)\]

and \((I - S)Y = Y\) by invertibility of the left-hand side.

(3) \(\Rightarrow\) (1) is proved in [6].

Example. We exhibit an operator \(T\) satisfying \(\|T\| < 1,\) \((I - T)X = X\) and \((I - T^2)X\) is not closed. Since \(\|N^{-1} \sum_{n=0}^{N-1} T^n\| \rightarrow 0,\) \(T\) satisfies the conditions of [6, Corollary 2] (with \(Q = 0\)), but is not quasi-compact (since this implies \(T^k\) are all quasi-compact).

Let \(X = l_2,\) \(0 > \lambda_1 > \lambda_2 > \cdots > \lambda_n > \cdots > -1.\) Define \(Tx = \{x_i, i\}\) where \(x = \{x_i\}.\) Then \((I - T)^{-1} x = \{x_i/(\lambda_i - 1)^{-1}\},\) \((I - T^2)X\) contains all sequences with finitely many nonzero terms, and is dense. But \(-1 \in \sigma(T)\) and \(I + T\) is not invertible, but \(I + T\) is one-to-one. Hence, \((I - T^2)X \subseteq (I + T)X \neq X = (I - T^2)X.\)

REFERENCES

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210