On the uniform ergodic theorem. II
HTML articles powered by AMS MathViewer
- by Michael Lin
- Proc. Amer. Math. Soc. 46 (1974), 217-225
- DOI: https://doi.org/10.1090/S0002-9939-1974-0417822-8
- PDF | Request permission
Abstract:
Let $\{ {T_t}\}$ be a strongly continuous semigroup of bounded linear operators on a Banach space $X$, satisfying ${\lim _{t \to \infty }}||{T_t}||/t = 0$. We prove the equivalence of the following conditions: (1) ${t^{ - 1}}\int _0^t {{T_r}dr}$ converges uniformly as $t \to \infty$. (2) The infinitesimal generator $A$ has closed range. (3) ${\lim _{\lambda \to {0^ + }}}\lambda {R_\lambda }$ exists in the uniform operator topology.References
- A. Brunel, H. Fong, and L. Sucheston, An ergodic super-property of Banach spaces defined by a class of matrices, Proc. Amer. Math. Soc. 49 (1975), 373–378. MR 365180, DOI 10.1090/S0002-9939-1975-0365180-0
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- M. Falkowitz, On finite invariant measures for Markov operators, Proc. Amer. Math. Soc. 38 (1973), 553–557. MR 312318, DOI 10.1090/S0002-9939-1973-0312318-5
- Einar Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246–269. MR 12212, DOI 10.1090/S0002-9947-1945-0012212-0
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Michael Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340. MR 417821, DOI 10.1090/S0002-9939-1974-0417821-6
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 217-225
- MSC: Primary 47A35; Secondary 47D05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0417822-8
- MathSciNet review: 0417822