A CLASS OF MANIFOLDS COVERED BY EUCLIDEAN SPACE

J. W. MAXWELL

ABSTRACT. The following is the main result:

Theorem 1. Suppose \(W^n \) is a PL manifold which has homotopy type \(K(\Pi, 1) \), \(W \) has one end \(\infty \), \(\pi_1 \) is essentially constant at \(\infty \), and the induced homomorphism \(\pi_1(\infty) \to \pi_1(W) \) is an isomorphism. Then the universal cover of \(W \) is PL homomorphic to \(\mathbb{R}^n \) provided \(n \geq 5 \).

1. Introduction. Let \(W^n \) denote a topological manifold of dimension \(n \). \(W \) is said to have homotopy type \(K(\Pi, 1) \) provided \(\pi_1(W) \cong \Pi \) and the universal cover \(\tilde{W} \) of \(W \) is contractible. A natural question is: Under what conditions is \(W \) homeomorphic to \(\mathbb{R}^n \)? For \(n = 1, 2 \), no additional assumptions are necessary since \(W \) contractible implies it is homeomorphic to \(\mathbb{R}^n \). For \(n \geq 3 \), the existence of contractible manifolds \(W \) not homeomorphic to \(\mathbb{R}^n \) makes some restrictions likely. In the next section an example is given of a 3-dimensional, open (noncompact and empty boundary) manifold of homotopy type \(K(\Pi, 1) \) whose universal cover is not homeomorphic to \(\mathbb{R}^3 \). It is a long-standing conjecture that the universal cover of a closed (compact and empty boundary) manifold \(W^n \) of homotopy type \(K(\Pi, 1) \), \(\Pi \) an infinite group, is homeomorphic to \(\mathbb{R}^n \). Some partial results to this conjecture in the case \(n \geq 5 \) can be found (without proof) in [3]. In [7] Waldhausen gives sufficient conditions for the universal cover of a closed 3-manifold of homotopy type \(K(\Pi, 1) \) to be homeomorphic to \(\mathbb{R}^3 \). The author knows of no counterexample to this conjecture.

This paper is concerned with open \(K(\Pi, 1) \) manifolds which admit a piecewise linear structure. For the remainder of this paper let \(W^n \) denote such a manifold, and suppose further that \(W \) has a single end which is denoted by \(\infty \). An inverse sequence of groups

Received by the editors October 3, 1973 and, in revised form, November 8, 1973.

Key words and phrases. Homotopy type \(K(\pi, 1) \), universal cover, euclidean space, end.

1 Research partially supported by the College of Arts and Sciences Office of Research and Graduate Studies, Oklahoma State University.
is said to be essentially constant if there exists a subsequence

so that isomorphisms $\text{Im}(f'_1) \cong \text{Im}(f'_2) \cong \text{Im}(f'_3)$ are induced. Following [5], we say that π_1 is essentially constant at ∞ if for a sequence $K_1 \subset K_2 \subset K_3$ of compacta with $W = \bigcup \text{int } K_i$, the sequence induced by inclusion

is essentially constant. The choice of $\{K_i\}$ of base points, and of connecting base paths used to define δ does not affect this property. Also $\pi_1(\infty) = \text{proj lim}(\delta)$ proves to be independent of these choices up to isomorphism in a preferred conjugacy class; and $\pi_1(W - K_i) \rightarrow \pi_1(W)$, for large i, induces a homomorphism $\pi_1(\infty) \rightarrow \pi_1(W)$ which is again determined within a conjugacy class. For a verification of these facts see [6].

Let M denote a compact manifold with nonempty boundary of homotopy type $K(\Pi, 1)$. If $\pi_1(\partial M)$ is isomorphic by inclusion to $\pi_1(M)$, then $W = \text{int } M$ is an open manifold with one end ∞, π_1 is essentially constant at ∞, and $\pi_1(\infty) \rightarrow \pi_1(W)$ is an isomorphism. The above properties of W are, however, not sufficient to guarantee that W is the interior of a compact manifold. (See [5].)

The following is the main result.

Theorem 1. Suppose W^n is a PL manifold which has homotopy type $K(\Pi, 1)$, W has one end ∞, π_1 is essentially constant at ∞, and the induced homomorphism $\pi_1(\infty) \rightarrow \pi_1(W)$ is an isomorphism. Then W is PL homeomorphic to R^n provided $n \geq 5$.

Before proceeding with the proof of Theorem 1, we first make an application of Theorem 1. Let Π denote a countable group with finite cohomological dimension, denoted $\text{cd}(\Pi)$. In [3] it is shown that if Π is countable and $\text{cd}(\Pi)$ is finite, then there is a polyhedron X^n of type $K(\Pi, 1)$ of dimension $n = \text{cd}(\Pi)$ if $\text{cd}(\Pi) \neq 2$, and of dimension $n = 3$ if $\text{cd}(\Pi) = 2$. Next it is shown that X^n is homotopy equivalent to a subpolyhedron Y^n of R^{2n}. Let W denote the interior of a regular neighborhood of Y. When $\text{cd}(\Pi) \geq 2$, Y has co-dimension ≥ 3 in W and therefore W has one end ∞, π_1 is essentially con-
stant at \(\infty \), and \(\pi_1(\infty) \to \pi_1(W) \) is an isomorphism. We have the following generalization of Corollary 3 of [3].

Theorem 2. Let \(\Pi \) be a countable group of finite cohomological dimension \(n \). If \(n \neq 2 \), there is a covering action of \(\Pi \) on \(R^{2n} \), and if \(n = 2 \) there is a covering action of \(\Pi \) on \(R^6 \).

Proof. If \(n \geq 2 \) the theorem follows from preceding remarks together with Theorem 1. If \(n = 1 \), this is Theorem 2 of [3].

All work is done in the PL category. [2] and [8] form standard references. \(\text{Int} \) and \(\partial \) are used to denote interior and boundary, respectively, a superscript is used to denote dimension and "\(\cong \)" denotes "is PL homeomorphic to".

2. First we prove two lemmas.

Lemma 1. Suppose \(W^n, n \geq 5 \), is a PL manifold which has homotopy type \(K(\Pi, 1) \), \(W \) has a single end \(\infty \), \(\pi_1 \) is essentially constant at \(\infty \), and the induced homomorphism \(\pi_1(\infty) \to \pi_1(W) \) is an isomorphism. Then given a compact set \(C \) in \(W \), there is a compact set \(D \) containing \(C \) such that \(\pi_i(W, W - D) = 0 \) for \(i = 0, 1, 2 \).

Proof. From [5, Proposition 1.9, Part A], we have the existence of an arbitrarily small connected neighborhood \(V \) of \(\infty \), such that in the following commutative diagram

\[
\begin{array}{ccc}
\pi_1(\infty) & \xrightarrow{j_*} & \pi_1(V) \\
\downarrow{i_*} & & \downarrow{i_*} \\
\pi_1(W) & & \pi_1(W) \\
\end{array}
\]

\(j_* \) is an isomorphism by construction, \(i_* \) is assumed to be an isomorphism, hence \(i_* \) is an isomorphism. But \(\pi_2(W) = 0 \) and from the homotopy sequence of the pair \((W, V) \), we have \(\pi_i(W, V) = 0 \) for \(i = 0, 1, 2 \). By the definition of neighborhood of \(\infty \), \(W - V \) is compact. Therefore given a compact set \(C \), let \(V \) be a connected neighborhood of \(\infty \) such that \(V \cap C = \emptyset \), and such that \(\pi_1(\infty) \to \pi_1(V) \) is an isomorphism. Then \(W - V \) is compact, contains \(C \), and \(\pi_i(W, V) = 0 \) for \(i = 0, 1, 2 \).

Lemma 2. Let \(K \) be a triangulation of the manifold \(W \). Let \(J \) denote
the i-skeleton of K, and L the dual $(n - i - 1)$-skeleton of K. Let C denote a compact subset of W such that $C \cap L = \emptyset$. Then there exists a finite subcomplex J_0 of J and a homeomorphism k of W such that

1. $k|J \cup L = 1$,
2. $k(U) \supset C$,

where U denotes the simplicial neighborhood of J_0 in K^n.

Proof. As usual let $N(J, K^n)$ and $N(L, K^n)$ denote simplicial neighborhoods of J and L, respectively, in K^n. Observe that since L is the dual skeleton to J, $\partial(N(J, K^n)) = \partial(N(L, K^n))$, and from the mapping cylinder structure of derived neighborhoods,

$$N(L, K^n) - L \simeq \partial(N(L, K^n)) \times [0, 1).$$

Let

$$Y = N(J, K^n) \cup (N(L, K^n) - L).$$

But $C \cap L = \emptyset$, so $C \subset Y$, and since C is compact, one can use the product structure on $N(L, K^n) - L$ to find a homeomorphism $k: Y \to Y$ with compact support such that $k(N(J, K^n)) \supset C$ and $k|J = 1$. Extend k by the identity to L. Let

$$J_0 = \{ \sigma \in J: k^{-1}(C) \cap N(\sigma, K^n) \neq \emptyset \}.$$

The compactness of C implies J_0 is finite and from the definition of J_0,

$$k(N(J_0, K^n)) \supset C.$$

Proof of Theorem 1. From [1] it suffices to show that given a compact set D contained in W, D is contained in the interior of an n-ball.

Let K denote a triangulation of W, \tilde{K} the induced triangulation of \tilde{W}. Let J denote the $(n - 3)$-skeleton of K, and L the dual 2-skeleton. Let $\tilde{\rho}$ denote the projection of \tilde{W} onto W and let $C = \rho(D)$. C is compact. By Lemma 1, there is a neighborhood V of ∞ such that

1. $C \subset W - V$,
2. $\pi_i(W, V) = 0$, $i = 0, 1, 2$.

From standard engulfing, as in [2], there is a homeomorphism $h: W \to W$ with compact support such that $h(V)$ contains L. Thus $h(C) \cap L = \emptyset$. Let \tilde{h} denote the homeomorphism on \tilde{W} which covers h. Then $\tilde{h}(D) \cap L = \emptyset$.

Let $D' = \tilde{h}(D)$. From Lemma 2, one can find a finite subcomplex \tilde{J}_0 of \tilde{J} and a homeomorphism $k: \tilde{W} \to \tilde{W}$ such that $k(N(\tilde{J}_0, \tilde{K}^n)) \supset D'$. Now \tilde{W} is contractible, $\dim J_0 \leq n - 3$, hence \tilde{J}_0 lies in the interior of a ball. \tilde{W} can be collapsed to \tilde{J}_0, hence $N(J_0, \tilde{K}^n)$ lies in the interior of a ball. Let B denote such a ball. Then $k(B) \supset D' = k(D)$ and $\tilde{W} = k(B) \supset D$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The following is an outline of the construction of the 3-dimensional example promised in the introduction. Let M^3 denote an open $K(\Pi, 1)$ manifold, and let W^3 denote an open, contractible 3-manifold which does not embed in R^3 [4]. Let L_1 and L_2 denote the images of $[0, \infty)$ under PL embeddings in M and W, respectively. Let M' and W' denote the complements in M and W, respectively, of the interior of a regular neighborhood of each of L_1 and L_2. Then $\partial M' \cong \partial W' \cong R^2$. Let $N = M' \cup_h W'$, where h is an orientation preserving homeomorphism from $\partial M'$ onto $\partial W'$. Then the universal cover \tilde{N} of N is an open contractible manifold and so N is a $K(\Pi, 1)$ manifold. Also $W' \subset N$ lifts to infinitely many disjoint copies of W' in N. But $\text{int } W'$ is homeomorphic to W and so N cannot be homeomorphic to R^3.

REFERENCES

7. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 36 #7146.

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74074