SPLITTING GROUPS BY INTEGERS

W. HAMAKER AND S. STEIN

ABSTRACT. A question concerning tiling Euclidean space by crosses raised this algebraic question: Let G be a finite abelian group and S a set of integers. When do there exist elements g_1, g_2, \ldots, g_n in G such that each nonzero element of G is uniquely expressible in the form sg_i for some s in S and some g_i? The question is answered for a broad (but far from complete) range of S and G.

Let G be a finite abelian group and $S = \{s_1, s_2, \ldots, s_k\}$ a set of k distinct integers. If there are elements g_1, g_2, \ldots, g_n in G such that each nonzero element of G is uniquely expressible in the form $sg_i, 1 \leq i \leq k, 1 \leq j \leq n$, we will say that S splits G. The set $\{g_1, \ldots, g_n\}$ is a splitting set. The cases $S = \{1, 2, \ldots, k\}$ and $S = \{-1, -2, \ldots, -k\}$ arise in the case of tiling Euclidean space by certain starbodies (see [2] and [3]). In [1] it was shown that $S = \{1, 3, 27\}$ splits no finite abelian group. If each $s_i \in S$ is relatively prime to $|G|$, the order of G, we call the splitting nonsingular. Throughout we will assume that all groups have at least two elements.

Theorem 1. Let S split the groups A and B such that the splitting of A is nonsingular. Let $0 \rightarrow A \xrightarrow{\alpha} G \xrightarrow{\beta} B \rightarrow 0$ be an exact sequence (kernel $\beta =$ image α, α one-one, β onto). Then S splits G.

Proof. Let a_1, a_2, \ldots, a_p be a splitting set in A, and b_1, b_2, \ldots, b_q be a splitting set in B. For each $n, 1 \leq n \leq q$, select $g_n \in G$ such that $\beta(g_n) = b_n$. We assert that the set

$$
\{\alpha(a_j) : 1 \leq j \leq p\} \cup \{\alpha(a) + g_n : a \in A - \{0\}, 1 \leq n \leq q\}
$$

is a splitting set for G.

To begin, let $U = \{a_1, \ldots, a_p\}$ and $V = \{g_1, \ldots, g_n\}$. Then we wish to show first that $G - \{0\} = S(\alpha(U) \cup (\alpha(U) + V))$. Noting that $SV \cup \{0\}$ is a complete set of coset representatives for G mod $\alpha(A)$, we have
G - \{0\} = (\alpha(A) - \{0\}) \cup (\alpha(A) + SV) = S(\alpha(U)) \cup (\alpha A + SV).

Now, since \(S\) splits \(A\) in a nonsingular manner, \(SA = A\), hence \(S(\alpha A) = \alpha A\).

Also, for any sets \(X\) and \(Y\) in \(G\) such that \(SX = X\), we have \(X + SY = SX + SY\). Thus

\[G - \{0\} = S(\alpha(U)) \cup (\alpha A + SV) = S(\alpha(U)) \cup S(\alpha A + V) \]

\[= S(\alpha(U)) \cup (\alpha A + V), \]

as desired.

The uniqueness of the representation follows from the fact that the set

\[(1) \text{ contains } \frac{|A| - 1}{k} + \frac{|B| - 1}{k} + \frac{(|A| - 1)(|B| - 1)/k}{2},\]

elements.

The following two corollaries are of special interest.

Corollary 1. Let \(S\) split the groups \(A\) and \(B\) in such a way that the splitting of \(A\) is nonsingular. Then \(S\) splits the product \(A \times B\).

Corollary 2. Let \(S\) split \(C(q)\) in a nonsingular manner. Then \(S\) splits \(C(q^n)\) for each positive integer \(n\).

Proof. There is an exact sequence \(0 \rightarrow C(q) \rightarrow C(q^{n+1}) \rightarrow C(q^n) \rightarrow 0\). Theorem 1, combined with an induction on \(n\), establishes the Corollary.

The two corollaries, together with the fundamental theorem of abelian groups, yield the following theorem.

Theorem 2. Let \(p\) be an odd prime integer. Let \(S = \{1, 2, \ldots, p - 1\}\) or \(\{\pm 1, \pm 2, \ldots, \pm(p - 1)/2\}\). Then \(S\) splits any abelian group whose order is a power of \(p\).

[As [2] or [3] show, Theorem 2 implies, for example, that a \((p - 1)/2\) cross tiles Euclidean \(n\) space if \(n(p - 1) + 1\) is a power of \(p\), say \(p^b\), in at least as many geometrically inequivalent ways as there are nonisomorphic abelian groups of order \(p^b\).]

The next theorem is sort of a converse to Theorem 1.

Theorem 3. Let \(0 \rightarrow A \xrightarrow{\alpha} G \xrightarrow{\beta} B \rightarrow 0\) be an exact sequence of groups. Assume that \(S\) splits \(G\). If each \(s_i\) in \(S\) is relatively prime to \(|B|\), then \(S\) splits \(A\). If each \(s_i\) in \(S\) is relatively prime to \(|A|\), then \(S\) splits \(B\).

Proof. We begin by proving the first assertion. Let \(T = \{g_1, g_2, \cdots, g_n\}\) be the splitting set of \(G\). We assert that \(\alpha(A) \cap T\) is a splitting set for \(\alpha(A)\). (Hence \(\alpha^{-1}(\alpha(A) \cap T)\) would be a splitting set for \(A\)).
We establish first that
\[\alpha(A) - \{0\} = S(\alpha(A) \cap T), \]
or, equivalently,
\[\alpha(A) \cap ST = S(\alpha(A) \cap T). \]
Clearly, \(\alpha(A) \cap ST \supseteq S(\alpha(A) \cap T) \). To show that \(S(\alpha(A) \cap T) \supseteq \alpha(A) \cap ST \), note that for \(s \in S \) and \(t \in T \)
\[st \in \alpha(A) \Rightarrow s\beta(t) = \beta(st) = 0 \Rightarrow \beta(t) = 0, \]
since \((s, |B|) = 1 \). Hence \(t \in \alpha(A) \) and \(\alpha(A) \cap ST \subseteq S(\alpha(A) \cap T) \).
Thus every element of \(\alpha(A) - \{0\} \) is representable in the form \(sg \) where \(s \in S \) and \(g \in \alpha(A) \cap T \). Showing that this representation is unique is straightforward.

The second assertion in the theorem is an immediate consequence of the fact that a homomorphic image of \(G \) is isomorphic to a subgroup of \(G \). This reduces the second case to the first. This concludes the proof.

The assumption in Theorem 3 that \((s_i, |B|) = 1 \) cannot be removed. To see this, consider \(S = \{1, 2, 3\} \) and an exact sequence \(0 \rightarrow C(2) \rightarrow C(4) \rightarrow C(2) \rightarrow 0 \).

Theorem 3, combined with Corollaries 1 and 2, yield the following reduction of the problem of determining all nonsingular splittings.

Theorem 4. Let \(G \) be a finite abelian group and \(S = \{s_1, s_2, \ldots, s_k\} \) a set of integers with each \(s_i \) relatively prime to \(|G| \). Then \(S \) splits \(G \) if and only \(S \) splits \(C(p) \) for each prime \(p \) that divides \(|G| \).

REFERENCES

 MR 36 #2517.

DEPARTMENT OF MATHEMATICS, DREXEL UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19104

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616