ABSTRACT. A formula, analogous to the classical Burnside lemma, is developed which counts orbit representatives from a set under a group action with a given stabilizer subgroup conjugate class. This formula is applied in a manner analogous to a proof of Polya's theorem to obtain an enumeration of patterns with a given automorphism group.

1. Let S be a finite set and G a finite group acting on S. Let Δ be a system of orbit representatives for G acting on S. The following theorem is well known:

Theorem 1 (Burnside [1]). For any function ω defined on S satisfying $\omega(\sigma s) = \omega(s)$ for all $\sigma \in G$, for all $s \in S$, we have

$$\sum_{s \in \Delta} \omega(s) = \frac{1}{|G|} \sum_{\sigma \in G} \sum_{s \in S} \omega(s) \chi(\sigma s = s)$$

where

$$\chi(\text{statement}) = \begin{cases} 1 & \text{if statement is true;} \\ 0 & \text{otherwise.} \end{cases}$$

For $s \in S$ let $G_s = \{ \sigma \in G : \sigma s = s \}$ be the stabilizer subgroup of G at s. Let G_1, G_2, \ldots, G_N be a complete set of nonconjugate subgroups of G, ordered such that $|G_1| \geq \cdots \geq |G_N|$. For any two subgroups $H, K \subseteq G$ we define

$$M_K(H) = \frac{1}{|K|} \sum_{\sigma \in G} \chi(\sigma H \sigma^{-1} \subseteq K).$$

Received by the editors July 1, 1973.

Key words and phrases. Orbit, stabilizer subgroup, conjugate subgroup, mark, pattern inventory, Möbius function.

Copyright © 1975, American Mathematical Society
$M_K(H)$ is sometimes called the *mark* of K at H. The matrix $M = (M_{G_j}(G_i))$ is triangular and $M_{G_j}(G_i) \geq 1$ so that we can define $B = M^{-1}$, $B = (b_{ij})$.

We also note that $M_{K(K)}$ is constant on conjugate subgroups of G.

In this paper we show the following result:

Theorem 2. For any function ω defined on S satisfying $\omega(\sigma s) = \omega(s)$ for all $\sigma \in G$, for all $s \in S$, we have

$$\sum_{s \in \Delta} \omega(s) \chi(G_s \sim G_i) = \sum_{j=1}^N b_{ij} \sum_{s \in S} \omega(s) \chi(G_js = s),$$

where $G_s \sim G_i$ means G_s conjugate to G_i and $G_js = s$ means s is fixed by all of G_j.

In an elegant paper [2], DeBruijn showed that Pólya’s counting theorem [5] can be obtained from Theorem 1 upon letting $S = R^D$, where R^D is the set of functions from the finite set $D = \{1, 2, \ldots, |D|\}$ to the finite set $R = \{1, 2, \ldots, |R|\}$, letting G act on D and hence on R^D by setting $\sigma f(d) = f(\sigma^{-1}d)$, and setting $\omega(f) = \prod_{d \in D} x_{f(d)}$, where x_1, x_2, \ldots are indeterminates. If we use the same approach, starting from Theorem 2 instead of Theorem 1, with no additional difficulty we obtain a more refined version of Pólya’s theorem.

Let $Q_i(x_1, x_2, \ldots)$ denote the *pattern inventory* for patterns whose automorphism group is conjugate to G_i:

$$Q_i(x_1, x_2, \ldots) = \sum_{f \in \Delta} \omega(f) \chi(G_f \sim G_i).$$

Let $P_i(y_1, y_2, \ldots)$ denote the *orbit index monomial*:

$$P_i(y_1, y_2, \ldots) = \prod_{d \in D} y_d^{q_{G_i}(d)},$$

where $q_{G_i}(d)$ is the number of orbits of G_i acting on D of length d, and y_1, y_2, \ldots are indeterminates. Then we have

Theorem 3.

$$Q_i(x_1, x_2, \ldots) = \sum_{j=1}^N b_{ij} P_j(y_1, y_2, \ldots)$$

where we substitute $\sum_{r \in R} x_r^r$ for y_i.

This result was proved independently by Stockmeyer [8]. However, he obtained it only as a by-product of elaborate Möbius function techniques.
We show here that Theorem 3 can be derived by simple algebraic manipulations.

We were led to this result by considering the general isomorph rejection problem in a multilinear setting [9], [10]. In this setting, besides Theorem 3, we have also derived from Theorem 2 a whole variety of results counting patterns with a given automorphism group. In particular, for example, we may let G act on R and D or let G act on D and H act on R. Or we may extend S to be a cartesian product of finite function spaces, G acting on each of them. Or we may observe that a theorem of Foulkes [3] is nothing more than Theorem 2 applied to a special function space.

2. We shall first prove Theorem 2. The weight function ω in this theorem is commonly thought of as a function from S into an algebra, usually the algebra of polynomials.

Proof of Theorem 2. Note that for any subgroup $H \subset G$, $\sum_{s \in G} \chi(\sigma H \sigma^{-1} \subset G_s)$ is constant on orbits of S, so if we denote the orbit of s by O_s and recall that $|G| = |G_s| |O_s|$ we have

$$\sum_{i=1}^{N} M_{G_i} (H) \sum_{s \in \Delta} \omega(s) \chi(G_s \sim G_i) = \sum_{s \in \Delta} \frac{\omega(s)}{|G_s| |O_s|} \sum_{r \in G} \chi(r H r^{-1} \subset G_s)$$

$$= \sum_{s \in S} \frac{\omega(s)}{|G_s| |O_s|} \sum_{r \in G} \chi(r H r^{-1} \subset G_s)$$

$$= \frac{1}{|G|} \sum_{r \in G} \sum_{s \in S} \omega(rs) \chi(H \subset G_{rs}) = \sum_{s \in S} \omega(s) \chi(H \subset G_s).$$

Inverting M gives our result.

We shall now use Theorem 2 to prove Theorem 3. The similarities between this proof and the proof of Pólya's theorem in [2] are obvious.

Proof of Theorem 3. Note that

$$Q_i(x_1, x_2, \cdots) = \sum_{j=1}^{N} b_{ij} \sum_{f \in R^D} \omega(f) \chi(G_j f = f).$$

But $G_j f = f$ means $\sigma f = f$ for all $\sigma \in G_j$, or $f(d) = f(\sigma^{-1} d)$ for all $d \in D$, for all $\sigma \in G_j$. Thus, f must be restricted to be constant on the orbits of G_j acting on D. We can then define f such that $G_j f = f$ by defining it on each orbit. Thus,

$$\sum_{f \in R^D} \omega(f) \chi(G_j f = f) = \sum_{f \in R^{\text{orb}(G_j; D)}} \prod_{A \in \text{orb}(G_j; D)} x_f^{1[A]}.$$
where $\text{Orb}(G_j : D)$ is the set of orbits of G_j acting on D. Using the familiar sum-product interchange gives

$$
\sum_{f \in R^D} \omega(f) \chi(G_j; f = f) = \prod_{A \in \text{Orb}(G_j : D)} \sum_{\rho \in R} x^{|A|}
$$

$$
= \prod_{d \in D} \left(\sum_{\rho \in R} x^d \right)^q = P_j \left(\sum_{\rho \in R} x^r, \sum_{\rho \in R} x^{2r}, \ldots \right). \quad \text{Q.E.D.}
$$

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, LA JOLLA, CALIFORNIA 92037

Current address: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455