GALOIS THEORY AND THE EXISTENCE OF MAXIMAL UNRAMIFIED SUBALGEBRAS

H. F. KREIMER

ABSTRACT. Let B be a commutative ring with 1, let G be a finite group of automorphisms of B, and let A be the subring of G-invariant elements of B. There exists a G-stable, unramified A-subalgebra of B which contains every unramified A-subalgebra of B.

Throughout this paper B will denote a given commutative ring with 1. G will denote a given finite group of automorphisms of B, and A will denote the subring of G-invariant elements of B. Following the terminology of [1], an A-subalgebra A' of B will be called unramified if A_p'/pA_p' is a separable algebra over A_p'/pA_p for every prime ideal p in A, where A_p (resp. A_p') is the ring of fractions of A (resp. A') with respect to the complement of p in A.

Lemma. Let m be a maximal ideal of A, and suppose A' is an A-subalgebra of B such that $A'/A'm$ is a separable A/m-algebra.

(i) The homomorphism of $A'/A'm$ into B/Bm induced by the inclusion map of A' into B is an injection, by which $A'/A'm$ may be identified with a subalgebra of B/Bm.

(ii) The dimension of the algebra $A'/A'm$ over the field A/m does not exceed the order of G.

(iii) $A'/A'm$ and the subring of G-invariant elements of B/Bm are linearly disjoint subalgebras of the A/m-algebra B/Bm.

Proof. Note that $A'/A'm$ is a finite-dimensional algebra over the field A/m. More generally, a separable algebra over a commutative ring which is a projective module over that ring is finitely generated as a module by [6, Proposition 1.1]. Therefore $A'/A'm$ is a semisimple algebra by [4, Chapter
IX, Proposition 7.7 and Theorem 7.10], and $A' \mathfrak{m}$ must equal the intersection of the maximal ideals of A' which contain it. Since B is integral over A [3, Chapter V, §1, Proposition 22], B is integral over A'. Since every prime ideal of A' is the contraction of a prime ideal of B [3, Chapter V, §2, Theorem 1], it follows that $A' \mathfrak{m}$ is the contraction of some ideal \mathfrak{m}' of B, $Bm \subseteq \mathfrak{m}'$, and $A' \cap Bm \subseteq A' \cap \mathfrak{m}' = A' \mathfrak{m}$. But obviously $A' \mathfrak{m} \subseteq A' \cap Bm$ and, therefore, $A' \mathfrak{m} = A' \cap Bm$ and the homomorphism of $A'/A' \mathfrak{m}$ into B/Bm induced by the inclusion map of A' into B is injective.

Let $B' = \prod_{\sigma \in G} \sigma(A')$, and let H be the group of automorphisms of B' which are restrictions of elements of G. Since each element σ of G induces an A/m-algebra isomorphism of $A'/A' \mathfrak{m}$ onto $\sigma(A')/\sigma(A') \mathfrak{m}$, $\sigma(A')/\sigma(A') \mathfrak{m}$ is again a separable A/m-algebra, and $B'/B' \mathfrak{m}$, which is a homomorphic image of the tensor product of the A/m-algebras $\sigma(A')/\sigma(A') \mathfrak{m}$, $\sigma \in G$, is a separable algebra over A/m by [2, Propositions 1.4 and 1.5]. Consequently, $B' \mathfrak{m}$ must equal the intersection of the maximal ideals of B' which contain it. Because \mathfrak{m} is a maximal ideal of A, the set of maximal ideals of B' which contain $B' \mathfrak{m}$ coincides with the set of maximal ideals of B' which lie over \mathfrak{m}. Choose a maximal ideal \mathfrak{m}' of B' which lies over \mathfrak{m}, let $H^Z(\mathfrak{m}')$ be the subgroup of $\sigma \in H$ such that $\sigma(\mathfrak{m}') \subseteq \mathfrak{m}'$, and let $H^T(\mathfrak{m}')$ be the subgroup of $\sigma \in H^Z(\mathfrak{m}')$ which induces the identity automorphism on B'/\mathfrak{m}'. By [3, Chapter V, §2, Theorem 2], H acts transitively on the set of all prime ideals of B' which lie over \mathfrak{m}, and B'/\mathfrak{m}' is a normal field extension of A/m with Galois group isomorphic to the quotient group $H^Z(\mathfrak{m}')/H^T(\mathfrak{m}')$. Therefore the prime ideals of B' which lie over \mathfrak{m} are maximal, their number is finite and equal to $(H : H^Z(\mathfrak{m}'))$, and B'/\mathfrak{m}' is isomorphic to B'/\mathfrak{m}' for every maximal ideal \mathfrak{m} of B' which lies over \mathfrak{m}. B'/\mathfrak{m}' is a separable field extension of A/m by [2, Proposition 1.4], and so the dimension of B'/\mathfrak{m}' over A/m is equal to the order of the Galois group of B'/\mathfrak{m}' over A/m. Letting \mathfrak{m} range over the set of maximal ideals of B' which contract to \mathfrak{m}, $B'/B' \mathfrak{m}$ is isomorphic to the direct product of the fields B'/\mathfrak{m} [3, Chapter II, §1, Proposition 5], and the dimension of $B'/B' \mathfrak{m}$ over A/m must equal

$$[H : H^Z(\mathfrak{m}')] \cdot [H^Z(\mathfrak{m}'): H^T(\mathfrak{m}')] = [H : H^T(\mathfrak{m}')]$$

Use the homomorphisms induced by the inclusion maps of A' into B' and B' into B to identify $B'/B' \mathfrak{m}$ with a subalgebra of B/Bm and $A'/A' \mathfrak{m}$ with a subalgebra of $B'/B' \mathfrak{m}$. Then neither the dimension of the A/m-algebra $B'/B' \mathfrak{m}$ nor the dimension of its subalgebra $A'/A' \mathfrak{m}$ can exceed the order of G. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Finally, letting \overline{A} be the subring of G-invariant elements of B/Bm, it is evident that \overline{A} is an A/m-algebra. If the canonical homomorphism of $(B'/B'm) \otimes_{A/m} \overline{A}$ into B/Bm, which maps $b \otimes a$ onto ba for $b \in B'/B'm$ and $a \in \overline{A}$, is injective, then $B'/B'm$ and \overline{A} are linearly disjoint subalgebras of the A/m-algebra B/Bm, and, consequently, so are $A'/A'm$ and A. But $B/Bm \cong (B'/B'm) \otimes_{B'} B$, and it has been noted already that $B'/B'm$ is a direct product of the fields B'/\mathfrak{m} ranging over the set of maximal ideals of B' which contract to m. Therefore, letting \mathfrak{m}_0 be any given maximal ideal of B' which lies over m, it is sufficient to prove that the canonical homomorphism π of $(B'/\mathfrak{m}_0) \otimes_{A/m} \overline{A}$ into $B/B\mathfrak{m}_0 \cong (B'/\mathfrak{m}_0) \otimes_{B'} B$, which maps $b \otimes a$ onto ba for $b \in B'/\mathfrak{m}_0$ and $a \in \overline{A}$, is injective. Since B'/\mathfrak{m}_0 is a normal, separable field extension of A/m with Galois group $H^2(\mathfrak{m}_0)/H^1(\mathfrak{m}_0)$, there exist a positive integer n and elements x_i, y_i of $B'/\mathfrak{m}_0, 1 \leq i \leq n$, such that $\sum_{i=1}^n x_i \cdot \rho(y_i) = \delta_{i, \rho}$ for all $\rho \in H^2(\mathfrak{m}_0)/H^1(\mathfrak{m}_0)$ by [5, Theorem 1.3]. Letting $\tau \in H^1(\mathfrak{m}_0)$ and letting σ be an element of G which extends τ, σ induces an A-algebra automorphism on the image of π, and in this way $H^2(\mathfrak{m}_0)$ is represented as a group of automorphisms of the image of π. Moreover, $H^1(\mathfrak{m}_0)$ is the kernel of this representation, and thus $H^2(\mathfrak{m}_0)/H^1(\mathfrak{m}_0)$ is represented as a group of A-algebra automorphisms of the image of π. For any element c of the image of π, let $\text{tr}(c)$ be the sum of the elements $\rho(c), \rho \in H^2(\mathfrak{m}_0)/H^1(\mathfrak{m}_0)$, and notice that, if $c \in B'/\mathfrak{m}_0$, then $\text{tr}(c) \in A/m$. If $b \in B'/\mathfrak{m}_0$ and $a \in \overline{A}$, then

$$b \otimes a = \sum_{i=1}^n x_i \cdot \text{tr}(y_i b) \otimes a = \sum_{i=1}^n x_i \otimes \text{tr}(y_i ba) \quad \text{in} \quad (B'/\mathfrak{m}_0) \otimes_{A/m} \overline{A};$$

and from this formula it follows easily that π is injective.

Theorem. There exists an unramified A-subalgebra of B which is stable under G and contains every unramified A-subalgebra of B.

Proof. Let \mathfrak{p} be any prime ideal of A, and let A' be an unramified A-subalgebra of B. Then $A_{\mathfrak{p}}'$ is the subring of G-invariant elements of $B_{\mathfrak{p}}$ by [3, Chapter V, §1, Proposition 23], $\mathfrak{p}A_{\mathfrak{p}}'$ is a maximal ideal of $A_{\mathfrak{p}}'$, and $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$ is a separable $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$-algebra. Therefore, the inclusion map of $A_{\mathfrak{p}}'$ into $B_{\mathfrak{p}}$ induces a monomorphism by which $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$ may be identified with a subalgebra of $B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}$ and the dimension of $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$ over $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$ does not exceed the order of G by the preceding lemma. Partially order the unramified A-subalgebras of B by inclusion, let \mathcal{F} be a chain of unramified A-subalgebras of B, and let $\overline{A} = \bigcup_{A' \in \mathcal{F}} A'$. Choose an element A' of \mathcal{F} for which the dimension of $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$ over $A_{\mathfrak{p}}'/\mathfrak{p}A_{\mathfrak{p}}'$
is greatest. If \(B' \) is an element of \(\mathcal{F} \) such that \(A' \subseteq B' \), then the dimensions of the \(A_p / \mathfrak{p} A_p \)-algebras \(A'_p / \mathfrak{p} A'_p \) and \(B'_p / \mathfrak{p} B'_p \) must be equal, and therefore \(A'_p / \mathfrak{p} A'_p = B'_p / \mathfrak{p} B'_p \). Consequently, \(A_p / \mathfrak{p} A_p = A'_p / \mathfrak{p} A'_p \), and so \(A_p / \mathfrak{p} A_p \) is a separable \(A_p / \mathfrak{p} A_p \)-algebra. Thus \(A \) is an unramified \(A \)-subalgebra of \(B \), and certainly it is an upper bound for \(\mathcal{F} \). By Zorn's lemma, there exists a maximal unramified \(A \)-subalgebra \(C \) of \(B \). If \(A' \) is any unramified \(A \)-subalgebra of \(B \), then \((A' C)_p / \mathfrak{p} (A' C)_p \), which is a homomorphic image of the tensor product of the \(A_p / \mathfrak{p} A_p \)-algebras \(A'_p / \mathfrak{p} A'_p \) and \(C_p / \mathfrak{p} C_p \), is a separable algebra over \(A_p / \mathfrak{p} A_p \) for any prime ideal \(\mathfrak{p} \) of \(A \), and consequently \(A' C \) is an unramified \(A \)-subalgebra of \(B \) which contains \(C \). Therefore, \(A' C = C \) and \(A' \subseteq C \). If \(\sigma \in G \), then \(\sigma(C) \) is again an unramified \(A \)-algebra, and so \(\sigma(C) \subseteq C \). Therefore, \(C \) is stable under \(G \).

REFERENCES

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306