Galois theory and the existence of maximal unramified subalgebras
HTML articles powered by AMS MathViewer
- by H. F. Kreimer
- Proc. Amer. Math. Soc. 47 (1975), 45-48
- DOI: https://doi.org/10.1090/S0002-9939-1975-0352074-X
- PDF | Request permission
Abstract:
Let $B$ be a commutative ring with 1, let $G$ be a finite group of automorphisms of $B$, and let $A$ be the subring of $G$-invariant elements of $B$. There exists a $G$-stable, unramified $A$-subalgebra of $B$ which contains every unramified $A$-subalgebra of $B$.References
- M. Auslander and D. A. Buchsbaum, On ramification theory in noetherian rings, Amer. J. Math. 81 (1959), 749–765. MR 106929, DOI 10.2307/2372926
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1314, Hermann, Paris, 1965 (French). MR 0260715
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- O. E. Villamayor and D. Zelinsky, Galois theory for rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721–731. MR 206055
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 47 (1975), 45-48
- DOI: https://doi.org/10.1090/S0002-9939-1975-0352074-X
- MathSciNet review: 0352074